Deep Learning; A Hands-on Introduction

Hamid Mohammadi
Ph.D. Candidate at OHSU,
Research Scientist at ObEN Inc.

Advanced Topics in Speech Processing Course, UCLA
04/23/2018

Colab Code: https://drive.google.com/open?id=1_FxdrwqS8y8CuZEkFVkdxcLf0BIQgNdI
Artificial Intelligence Frameworks

- **Rule-based:**
 - Design all the rules manually by experts
 - E.g. Expert systems

- **Classic Machine Learning:**
 - Features are designed by experts
 - Models operate on the features
 - E.g. MFCCs for speech

- **Modern ML, Representation Learning:**
 - Learn representations using some techniques
 - Models operate on the learned features
 - E.g. Autoencoders

- **Modern ML, Deep Learning:**
 - Features/mappings are learned from raw data jointly
Outline

● Computational Graphs
● Linear Regression
● Logistic Regression (~Perceptron)
● Shallow Neural Networks
● Deep Neural Networks
● Convolutional NNs
● Recurrent NNs
● Future Readings
Computational Graphs

- A data structure to represent about mathematical expressions
- Example: \(e = (a + b) \times (b + 1) \)
Computational Graphs

- Example, Linear Regression
 - Input: x0, x1
 - Predicted Output: y3=w0*x0+w1*x1+w2
 - Original Output: y
 - Parameters: W=w0, w1, w2

\[y_3 = y_2 + w_2 \]
\[y_2 = y_0 + y_1 \]
\[y_0 = w_0 \times x_0 \]
\[y_1 = w_1 \times x_1 \]
\[x_0 \]
\[x_1 \]
Computational Graphs

- **Example, Linear Regression**
 - Input: x_0, x_1
 - Predicted Output: $y_3 = w_0 x_0 + w_1 x_1 + w_2$
 - Original Output: y
 - Parameters: $W = w_0, w_1, w_2$

- **How to optimize?**
 - Minimize Mean-squared error:
 - Loss: $J(W) = (y - y_3)^2$

- **How to minimize:**
 - Gradient Descent
Gradient Descent: Estimating Graph Parameters

- At each iteration,
 - take a step proportional to the negative of the gradient of the error function with respect to weights at point W

- repeat until convergence:
 $$w_0 := w_0 - \alpha \frac{du}{dw_0} J(W)$$
 $$w_1 := w_1 - \alpha \frac{du}{dw_1} J(W)$$
 $$w_2 := w_2 - \alpha \frac{du}{dw_2} J(W)$$
Gradient Descent: Estimating Graph Parameters

- At each iteration,
 - take a step proportional to the negative of the gradient of the error function with respect to weights at point W

- repeat until convergence:
 $w_0 := w_0 - \alpha \frac{dw}{dw_0} J(W)$
 $w_1 := w_1 - \alpha \frac{dw}{dw_1} J(W)$
 $w_2 := w_2 - \alpha \frac{dw}{dw_2} J(W)$
Linear Regression

- A linear approach for modelling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X
- Equation $y = w_0 \times x_0 + w_1 \times x_1 + \ldots + b$
- Some closed-form solutions exists, but we will use gradient descent to estimate the parameters on a linear/non-linear toy data:

- Demo in TensorFlow:
 - https://colab.research.google.com/drive/1qO3iJhxC9HBee123LANiZqcGr6bf5OGH
Single-Layer Neural Networks (Perceptron)

- A.k.a Logistic Regression, a simple linear classifier
- Equation
 \[f(x) = \begin{cases}
 1 & \text{if } w \cdot x + b > 0 \\
 0 & \text{otherwise}
 \end{cases} \]
- The model has a hard-decision, to be able to compute gradients, apply sigmoid on \(w \cdot x + b \)
- We intend to estimate the parameters using Gradient Descent

- Demo in TensorFlow:
 - https://colab.research.google.com/drive/11gXVnBPgnZTN8DXLEomRMj7hHubWjMwC
Two-Layer Neural Network (Shallow NN)

- Two computations of type \(f(W.x + b) \) where \(f \) is a nonlinear function
- Equation \(y = g(f(x.W_1 + b_1).W_2 + b_2) \)

- Regression demo on nonlinear regression data:
 https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvclN5bBfRJ8fw

- Classification demo on linearly non-separable data:
 https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq8RBZ
Recap: Parameter Optimization in TensorFlow

- What are input and output? X and Y
- Specify the model architecture (How to connect X to Y using computations that have parameters)
- Specify a cost function to minimize.
- How to update the parameters? Gradient descent and its variants
- How to regularize the parameters? L1/L2 add to cost function, Dropout
Recap: Parameter Optimization in TensorFlow

- What are input and output? X and Y
- Specify the model architecture (How to connect X to Y using computations that have parameters)
- Specify a cost function to minimize.
- How to update the parameters? Gradient descent and its variants
- How to regularize the parameters? L1/L2 add to cost function, Dropout

```python
# inputs
x = tf.placeholder(tf.float32, shape=[None, 1])
y = tf.placeholder(tf.float32, shape=[None, 1])
```
Recap: Parameter Optimization in TensorFlow

```python
# parameters
w1 = tf.Variable(tf.random_normal([[1, hidden_layer_size]]))
b1 = tf.Variable(tf.random_normal([hidden_layer_size]))

w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))
b2 = tf.Variable(tf.random_normal([1]))

# model architecture (y=f(x))
h = tf.sigmoid( tf.add(tf.matmul(x, w1), b1) )
y_ = tf.add(tf.matmul(h, w2), b2)
```
Recap: Parameter Optimization in TensorFlow

- What are input and output? X and Y
- Specify the model architecture (How to connect X to Y using computations that have parameters)
- Specify a cost function to minimize.
- How to update the parameters? Gradient descent and its variants
- How to regularize the parameters? L1/L2 add to cost function, Dropout

```
# loss function
loss = tf.reduce_mean(tf.square(y - y_))
```
Recap: Parameter Optimization in TensorFlow

- What are input and output? X and Y
- Specify the model architecture (How to connect X to Y using computations that have parameters)

```python
# update
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
accuracy = tf.reduce_mean(tf.abs(y - y_))
```
Static vs. Dynamic Computational Graphs

- **Static**: TensorFlow and Theano, **Dynamic**: PyTorch
- Both frameworks operate on tensors and view model as directed acyclic graph (DAG)
- Both view any model as a computational graph,
- They differ drastically on how you can define them.
- TF/Theano:
 - “Data as code and code is data”
 - Graph is defined statically before runtime
 - All communication with outer world is performed via tf.Session object and tf.Placeholder
 - Harder to debug and find issues
- PyTorch:
 - things are way more imperative and dynamic
 - you can define, change and execute nodes as you go
 - the framework is more tightly integrated with Python language and feels more native
 - Easier sequence modelling
 - Easier to debug
Deep Neural Networks

Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

\[f(x) = s_K(w_K(...s_2(w_2.s_1(w_1.x + b_1) + b_2)... + b_K) \]

"Multilayer feedforward networks are universal approximators", Hornik et al, 1989.
Deep Neural Networks

Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

\[f(x) = s_K(w_k ...(s_2(s_1(w_1 x + b_1) + b_2)...)) + b_K) \]

In fact, even two-layered (shallow) neural networks are **universal approximators**.
Deep Neural Networks

Deep neural networks refer to 3+ layered neural networks:
Why Deep?

If Shallow Neural Networks are universal approximators, why use deep architectures?
Why Deep?

If Shallow Neural Networks are universal approximators, why use deep architectures?

1- The brain has a deep architecture
2- Cognitive processes seem deep
3- Insufficient depth can hurt modeling
Why Deep?

If Shallow Neural Networks are universal approximators, why use deep architectures?

1- The brain has a deep architecture
 - Visual cortex has a sequence of levels,
 - Each level represents the input at a different level of abstraction,
 - More abstract features further up in the hierarchy, defined in terms of the lower-level ones.
Why Deep?

Feature representation

3rd layer
"Objects"

2nd layer
"Object parts"

1st layer
"Edges"

Pixels
Why Deep?

If Shallow Neural Networks are universal approximators, why use deep architectures?

2- Cognitive processes seem deep

- Humans organize their ideas and concepts hierarchically,
- Humans first learn simpler concepts and then compose them to represent more abstract ones,
- Engineers break-up solutions into multiple levels of abstraction and processing
Why Deep?
Why Deep?

If Shallow Neural Networks are universal approximators, why use deep architectures?

3- Insufficient depth can hurt modeling

- there exist function families which the required number of nodes may grow exponentially with the input size [Hastad 1986]
- Some families of functions which can be efficiently (compactly) represented with $O(n)$ nodes (for n inputs) for depth d
 but for which an exponential number ($O(2^n)$) of nodes is needed if depth is restricted to $d-1$
Difficulties of training deep architectures

The reason deep architectures did not work before ~2007:

- Not enough computational power (cheap GPUs today)
- Not enough data even if computation was not an issue
- Primitive Technology (especially regularization was more primitive)
- Hard to implement (open-source toolkits help reusing code easier)

Technical issues:

- Vanishing gradients: as the error back-propagated, the error gets smaller.
- Prone to local minima: More local minima and more non-linear
- Regularization: Stop memorizing and start generalizing
Difficulties of training deep architectures

The reason deep neural networks did not work before ~2007

- Not enough computational power (cheap GPUs today)
- Not enough data even if computation was not an issue
- Primitive Technology (especially regularization was more primitive)
- Hard to implement (open-source toolkits help reusing code easier)

Technical issues:

- Vanishing gradient: as the error back-propagated, the error gets smaller
- Prone to local minima: more local minima and more complex cost function
- Regularization: more memorizing and less generalizing
Solutions

- *Pre-training (obsolete):* Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs)
Solutions

- **Pre-training (obsolete)**: Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs)
- **Better transfer function**: ReLU, Leaky ReLU, R/PReLU, Maxout
DNN with Relu

ReLU and the variance activation functions have gained popularity recently.

ReLU well for speech and image processing tasks.

Faster convergence, Better convergence. Goes well with Dropout.
Solutions

- **Pre-training**: Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs)
- **Better transfer function**: ReLU, Leaky ReLU, R/PReLU, Maxout
- **Regularization**: L1, L2, Sparseness, Dropout
 - Adding a penalty term to the cost function
L1 vs. L2

L1: \[R(\theta) = ||\theta||_1 = \sum_{i=1}^{n} |\theta_i| \]

L2: \[R(\theta) = ||\theta||_2^2 = \sum_{i=1}^{n} \theta_i^2 \]
Solutions

- **Pre-training**: Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs)

- **Better transfer function**: ReLU, Leaky ReLU, R/PReLU, Maxout

- **Regularization**: L1, L2, Sparse, Dropout

Adding a penalty term to the cost function

```python
# TF: Deep Neural Network; L1
w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))
b1 = tf.Variable(tf.random_normal([hidden_layer_size]))
w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))
b2 = tf.Variable(tf.random_normal([1]))
h = tf.sigmoid( tf.add(tf.matmul(x, w1), b1) )
y_ = tf.add(tf.matmul(h, w2), b2)
# loss function
loss = tf.reduce_mean(tf.square(y - y_)+a*(tf.abs(w1)+tf.abs(w2)))
```
Solutions

- Pre-training: Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs).
- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout.
- Regularization: L1, L2, Sparse, Dropout.

Adding a penalty term to the cost function:

```python
# TF: Deep Neural Network; L2
w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))
b1 = tf.Variable(tf.random_normal([hidden_layer_size]))
w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))
b2 = tf.Variable(tf.random_normal([1]))
h = tf.sigmoid( tf.add(tf.matmul(x, w1), b1) )
y_ = tf.add(tf.matmul(h, w2), b2)
# loss function
loss = tf.reduce_mean(tf.square(y - y_) + a*(w1**2+w2**2))
```
L1 vs. L2 regularization
Dropout

Randomly drop nodes with probability p

It is a form of model averaging (averaging a lot of models)
Solutions

- **Pre-training**: Rather than random initialization, initialize from an unsupervised network. Typically using Autoencoders or Restricted Boltzmann Machines (RBMs).

- **Better transfer function**: ReLU, Leaky ReLU, R/PReLU, Maxout

- **Regularization**: L1, L2, Sparse, Dropout

```python
# TF: Deep Neural Network; **Dropout**

w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))
b1 = tf.Variable(tf.random_normal([hidden_layer_size]))
w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))
b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid( tf.add(tf.matmul(x, w1), b1) )
dropped = tf.nn.dropout(h, 0.5)
y_ = tf.add(tf.matmul(h, w2), b2)

# loss function

loss = tf.reduce_mean(tf.square(y - y_))
```
Dropout

(a) Without dropout

(b) Dropout with $p = 0.5$.
Gradient Descent variants

- Stochastic Gradient Descent (SGD): Compute gradients over a batch of samples and average them.
- Momentum
- Adadelta
- Adagrad
- Rmsprop
- BFGS

http://sebastianruder.com/optimizing-gradient-descent/
The effect of dropout and momentum
Convolutional Neural Networks (CNNs)

In CNNs, layers have sparse connectivity by design

Better suited for correlated features (Image, Spectrogram, etc)
CNNs

Weight sharing

https://colah.github.io/posts/2014-07-Understanding-Convolutions/

CNNs
CNNs

Weight matrix computation $W \cdot x$

Regular fully-connected weight matrix

$$W = \begin{bmatrix}
W_{0,0} & W_{0,1} & W_{0,2} & W_{0,3} & \ldots \\
W_{1,0} & W_{1,1} & W_{1,2} & W_{1,3} & \ldots \\
W_{2,0} & W_{2,1} & W_{2,2} & W_{2,3} & \ldots \\
W_{3,0} & W_{3,1} & W_{3,2} & W_{3,3} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}$$

Convolutional weight matrix

$$W = \begin{bmatrix}
w_0 & w_1 & 0 & 0 & \ldots \\
0 & w_0 & w_1 & 0 & \ldots \\
0 & 0 & w_0 & w_1 & \ldots \\
0 & 0 & 0 & w_0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}$$
CNNs
CNNs: interactive demo

Demo in Keras:

https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSI-WwQrqEWQU S#scrollTo=BFiZwlTJoVhW
Recurrent Neural Networks

RNN: For modeling sequence where adjacent frames are not independent from each other.

Models dynamics by having a state which is computed from the previously seen samples.
Gated RNNs

- Long Short Term memory Networks (LSTMs)
- Gated Recurrent Units (GRUs)
- They model next hidden state in a more compact manner
- They are a black box “memory unit”
- Further reading:
 - https://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNNs: Interactive demo

- Sequence classifications using LSTMs
- Input: IMDB review text
- Output: User rating, positive or negative
- Demo in Keras:
 - https://colab.research.google.com/drive/14nioF_2bTxeiOsIXRyAg8Ribj3ic9Eh
CNN/RNNs for Audio

Spectrogram can be treated as image, A recurrent layer models the sequence
- No feature engineering (MFCC computation)
- No adding delta or appending frames to capture context
Challenges

The systems are still vulnerable:

- Image recognition tasks are vulnerable to Noise that doesn’t affect human perception

- Speech recognition in cars? Not near perfect.

Further Reading: Generative Models

- Generative models: definition
- Popular models:
 - Generative Adversarial Networks (GANs):
 - Variational Autoencoders (VAEs):
 - Autoregressive Models:
 - Wavenet for audio generation
 - PixelRNN/PixelCNN for image generation
Further Reading: Miscellaneous

- Sequential models with Attention: https://distill.pub/2016/augmented-rnns/
- Connectionist Temporal Classification (CTC) for end-to-end Speech Recognition
- Capsule Nets by Prof. Hinton
- Meta Learning
- Bayesian/Probabilistic Neural Networks
ObEN Inc.

Creating Personal Avatars:

- 3D Face/Body/Dance
- Personalized Speech/Singing
- Chatbot

Internship/Full-time positions:
Projects are a combination of:

- Speech Signal Processing
 (With a focus on Speech Synthesis)
- Machine Learning (Deep Learning)

Email: hamid@oben.com
ObEN’s AI generated poem using Deep Learning

Oben all the time

The story of it of mine

I said you wanna be your mind with you

I wanna see you say it let me see you love me

I said you see the stars to the way you want to be all the way

They can't see you say

I see the way you see

All I see that we'll be better and I can see

And I said you want to be all the world