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e Rule-based:
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e Modern ML, Deep Learning:
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Computational Graphs

e A data structure to represent about mathematical expressions
e Example: e=(@+b)*x(®+1)
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Computational Graphs

Add bias
e Example, Linear Regression
o Input: x0, x1
Predicted Output: y3=w0*x0+w1*x1+w2
Add terms

O
o  Original Output: y
o Parameters: W=w0, w1, w2

Multiply by Weights




Computational Graphs

Add bias

e Example, Linear Regression

o Input: x0, x1

o Predicted Output: y3=w0*x0+w1*x1+w2

o  Original Output: y Add terms

o Parameters: W=w0, w1, w2
e How to optimize?

o  Minimize Mean-squared error:

m  Loss: J(W)=(y-y3)**2

e How to minimize: Multiply by Weights

o Gradient Descent




Gradient Descent: Estimating Graph Parameters

e At each iteration,
o take a step proportional to the
negative of the gradient of the error function

with respect to weights at point W

J(w) ! Gradient

® repeat until convergence:
w0 := w0 — a-& J(W)

dy T
w2 = w2 — azsJ(W) >




Gradient Descent: Estimating Graph Parameters

e At each iteration,
o take a step proportional to the
negative of the gradient of the error function
with respect to weights at point W

J(w)
[ )

® repeat until convergence:
w0 = w0 — a%ﬂ—“OJ(W)
wl :=wl —agxJ(W)
W = w2—a£—“2J(W) >

\ W
Learning rate Gradient of cost
function at w




Linear Regression

e A linear approach for modelling the relationship between a scalar dependent
variable y and one or more explanatory variables (or independent variables)
denoted X

e FEquation Yy=wo*xg+wi*xxz;+...+0b

e Some closed-form solutions exists, but we will use gradient descent to
estimate the parameters on a linear/non-linear toy data:

*  train samples
. 10 *  test samples

02

e Demo in TensorFlow:
o https://colab.research.google.com/drive/1q0O3iJhxC9HBee123LANiIZacGrebf50GH



https://colab.research.google.com/drive/1qO3iJhxC9HBee123LANiZqcGr6bf5OGH

Single-Layer Neural Networks (Perceptron)

e A.k.a Logistic Regression, a simple linear classifier

e Equation f(x):{l if w-z+b>0 ﬁ

° 0 otherwise .. |

e The model has a hard-decision, to be able to J
compute gradients, apply sigmoid on w.x+b e 2 0z 4

e We intend to estimate the parameters using Gradient Descent

e Demo in TensorFlow: N I B | S b’ S
o https://colab.research.google.com/drive/11gXVnBPgnZTN8DXLEomRMj7hHubWjMwC

@)



https://colab.research.google.com/drive/11gXVnBPqnZTN8DXLEomRMj7hHubWjMwC

Two-Layer Neural Network (Shallow NN)

e Two computations of type f(W.x +b) where f is a nonlinear function
e Equation y = g(f(x. Wy +by). Wy + by)

e Regression demo on nonlinear regression data:
https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWitszvcINSbBfRJ
8fw

e C(Classification demo on linearly non-separable data:
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZ0d5q97Tqg
8RBZ



https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvcIN5bBfRJ8fw#scrollTo=NdJmCKKG7YVg
https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvcIN5bBfRJ8fw#scrollTo=NdJmCKKG7YVg
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq8RBZ
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq8RBZ

Recap: Parameter Optimization in TensorFlow

e What are input and output? X and Y

e Specify the model architecture (How to connect X to Y using computations
that have parameters)

e Specify a cost function to minimize.

e How to update the parameters? Gradient descent and its variants

e How to regularize the parameters? L1/L2 add to cost function, Dropout



Recap: Parameter Optimization in TensorFlow

e What are input and output? X and Y

e Specify the model architecture (How to connect X to Y using computations
that have parameters)

e Specify a cost function to minimize.

e How to update the parameters? Gradient descent and its variants

e How to regularize the parameters? L1/L2 add to cost function, Dropout

# inputs
x = tf.placeholder(tf.float32, shape=[None, 1])
y = tf.placeholder(tf.float32, shape=[None, 1])



Recap: Parameter Optimization in TensorFlow

# paramteres

wl = tf.Variable(tf.random normal([1l, hidden layer size]))
bl = tf.Variable(tf.random normal([hidden layer size]))

w2 = tf.Variable(tf.random normal([hidden layer size, 1]))
b2 = tf.vVariable(tf.random normal([1]))

# model architecture (y=f(x))
h = tf.sigmoid( tf.add(tf.matmul(x, wl), bl) )
y = tf.add(tf.matmul(h, w2), b2)



Recap: Parameter Optimization in TensorFlow

e What are input and output? X and Y

e Specify the model architecture (How to connect X to Y using computations
that have parameters)

e Specify a cost function to minimize.

e How to update the parameters? Gradient descent and its variants

e How to regularize the parameters? L1/L2 add to cost function, Dropout

# loss funstion
loss = tf.reduce mean(tf.square(y - y ))



Recap: Parameter Optimization in TensorFlow

e What are input and output? X and Y
e Specify the model architecture (How to connect X to Y using computations

that hawva naramatarce)

# update
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)

accuracy = tf.reduce mean(tf.abs(y - y ))



Static vs. Dynamic Computational Graphs

Static: TensorFlow and Theano, Dynamic: PyTorch
Both frameworks operate on tensors and view model as directed acyclic graph (DAG)
Both view any model as a computational graph,
They differ drastically on how you can define them.
TF/Theano:
o “Data as code and code is data”
o  Graph is defined statically before runtime
o  All communication with outer world is performed via tf.Session object and tf.Placeholder
o Harder to debug and find issues
e PyTorch:
o things are way more imperative and dynamic
you can define, change and execute nodes as you go
the framework is more tightly integrated with Python language and feels more native
Easier sequence modelling
Easier to debug

o O O O



Deep Neural Networks

Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

f(x) = sK(wk.(...SQ(wg.w + b3)...) + bk)

“Multilayer feedforward networks are universal approximators”, Hornik et al,
1989.

hidden layer 1 hidden layer 2 hidden layer 3

input layer




Deep Neural Networks

Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

In fact, even two-layered (shallow) neural networks are universal approximators.
hidden layer

input layer /
i output layer

e

oSN




Deep Neural Networks

Deep neural networks refer to 3+ layered neural networks:

hidden layer 1 hidden layer 2 hidden layer 3
L)

input layer

output layer




Why Deep?

If Shallow Neural Networks are universal approximators, why use deep
architectures?



Why Deep?

If Shallow Neural Networks are universal approximators, why use deep
architectures?

1- The brain has a deep architecture
2- Cognitive processes seem deep

3- Insufficient depth can hurt modeling



Why Deep?

If Shallow Neural Networks are universal approximators, why use deep
architectures?

1- The brain has a deep architecture

- Visual cortex has a sequence of levels ,

- Each level represents the input at a different level of abstraction,

- More abstract features further up in the hierarchy, defined in terms of the
lower-level ones.



Why Deep?

Feature representation

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
llEdgeS”

Pixels




Why Deep?

If Shallow Neural Networks are universal approximators, why use deep
architectures?

2- Cognitive processes seem deep

e Humans organize their ideas and concepts hierarchically,

e Humans first learn simpler concepts and then compose them to represent
more abstract ones,

e Engineers break-up solutions into multiple levels of abstraction and
processing



Why Deep?

B A

subsubsub?2
subsubsub1 subsubsub3
subsub1 subsub?2 subsub3
sub1 sub2 sub3
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main



Why Deep?

If Shallow Neural Networks are universal approximators, why use deep
architectures?

3- Insufficient depth can hurt modeling

- there exist function families which the required number of nodes may grow

exponentially with the input size [Hastad 1986]
“An Average-case Depth Hierarchy Theorem for Higher Depths”, Hastad 1986.

- Some families of functions which can be efficiently (compactly) represented
with O(n) nodes (for n inputs) for depth d
but for which an exponential number (O(2”n)) of nodes is needed if depth is
restricted to d-71



Difficulties of training deep architectures

The reason deep

Not enough |
Not enough |
Primitive Tec
Hard to impl

Technical issues:

Vanishing gr

Prone to loc:
Regularizatic

oD oL A
150 4.
P el

400

10

primitive)
e easier)

or gets smaller)



Difficulties of training deep architectures

The reason deep neural networks did not work before ~2007

Not enough computational power (cheap GPUs today)
Not enough data even if computation was not an issue
Primitive Technology (especially regularization was more primitive)
Hard to implement (open-source toolkits help reusing code easier)

Technical issues:

Vanishing gradient: as the error back-propagated, the error gets smaller

Prone to local minima: more local minima and more complex cost function
Regularization: more memorizing and less generalizing



Solutions

- Pre-training (obsolete): Rather than random initialization, initialize from an
unsupervised network. Typically using Autoencoders or Restricted Boltzmann
Machines (RBMs)



Solutions

- Pre-training (obsolete): Rather than random initialization, initialize from an

unsupervised network. Typically using Autoencoders or Restricted Boltzmann
Machines (RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PRelLU, Maxout



DNN with Relu

RelLU and the variance activation functions have gained popularity recently
ReLU well for speech and image processing tasks

Faster convergence, Better convergence. Goes well with Dropout.

-—— - =

yi =0

Yi = a;T;

Yyi = G4iTji

- ——— e - ————

I
ReLU Leaky ReLU/PReLU Randomized Leaky ReLU



Solutions

- Pre-training. Rather than random initialization, initialize from an unsupervised
network. Typically using Autoencoders or Restricted Boltzmann Machines
(RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout

- Regularization: L1, L2, Sparseness, Dropout
Adding a penalty term to the cost function



L1 vs. L2

n

L1:  R(e)=|o|,=Y |o,]

i=1

L2:  R(0)=||0|f=>. ¢’
=1



Solutions
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# TF: Deep Neural Network; L1

wl = tf.Variable(tf.random_normal([1, hidden_layer size]))
bl = tf.vVariable(tf.random _normal([hidden_layer size]))

w2 = tf.Variable(tf.random_normal([hidden_layer size, 1]))
b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid( tf.add(tf.matmul(x, wl), bl) )
y = tf.add(tf.matmul(h, w2), b2)
# loss function

loss = tf.reduce _mean(tf.square(y - y )+a*(tf.abs(wl)+tf.abs(w2)))

ed
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# TF: Deep Neural Network; L2

wl = tf.Variable(tf.random_normal([1, hidden_layer size]))
bl = tf.vVariable(tf.random _normal([hidden_layer size]))

w2 = tf.Variable(tf.random_normal([hidden_layer size, 1]))
b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid( tf.add(tf.matmul(x, wl), bl) )
y = tf.add(tf.matmul(h, w2), b2)
# loss function

loss = tf.reduce_mean(tf.square(y - y_ )+a*(wl**2+w2**2))

ed




L1 vs. L2 regularization




Dropout

Randomly drop nodes with probability p

It is a form of model averaging (averaging a lot of models)
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# TF: Deep Neural Network; Dropout

wl = tf.Variable(tf.random _normal([1, hidden layer size]))
bl = tf.vVariable(tf.random _normal([hidden_layer size]))

w2 = tf.Variable(tf.random_normal([hidden_layer size, 1]))
b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid( tf.add(tf.matmul(x, wl), bl) )
dropped = tf.nn.dropout(h,0.5)

y = tf.add(tf.matmul(h, w2), b2)

# loss function

loss = tf.reduce mean(tf.square(y - y ))

ed
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(b) Dropout with p

(a) Without dropout



Gradient Descent variants

- Stochastic Gradient Descent (SGD): Compute gradients over a batch of
samples and average them.

—  SGD
- Momentum — Momentum
- Adadelta = NEG

— Adagrad
- Adagrad Adadelta
-  Rmsprop SIERIOP
- BFGS -2

-1.0
http://sebastianruder.com/optimizing-gradient-descent/ Lo TR0



The effect of dropout and momentum

0.7 ; :
§.'\ ~— no dropout, mom 0.9_loss_traing
- 3 ~— no dropout, mom 0.9_loss_valid
T : ~— no dropout, mom 0.1_loss_traing
K,‘ \“\ : ~— no dropout, mom 0.1_loss_valid
0.5 \.\. : ’ ~— dropout, mom 0.9_loss_traing
. 'M dropout mom 0. 9 loss_valid
o : ?
0.0 ; H ; 3
0 20 40 60 80

Number of epochs

100



Convolutional Neural Networks (CNNs)

In CNNs, layers have sparse connectivity by design

Better suited for correlated features (Image, Spectrogram, etc)

layer m+ | O
layer m

layer m-|



CNNs

Weight sharing

feature m

layer m

layer m-|

https://colah.qithub.io/posts/2014-07-Understanding-Convolutions/

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/



https://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/

CNNs

W1 WoA W1 Wo AW W1 Wo AW




CNNs

Weight matrix computation W.x

 Woo Woi Woz Wosz ...] wo wi O 0

Wio Win Wi Wiz ... 0 wo Wi 0
W=|Wy Wy Wy Wy W=10 0 w w
Wio Wi1 Wip Wis 0 0 0 wy

Regular fully-connected weight matrix Convolutional weight matrix







CNNs: interactive demo

Demo in Keras:

https://colab.research.qgoogle.com/drive/1rsjU9s0 JcNzi7DSBDNSI-WwQraEWQU
S#scrollTo=BFiZwITJoVhW



https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSl-WwQrqEWQUS#scrollTo=BFiZwlTJoVhW
https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSl-WwQrqEWQUS#scrollTo=BFiZwlTJoVhW

Recurrent Neural Networks

RNN: For modeling sequence where adjacent frames are not independent from
each other

Models dynamics by having a state which is computed from the previously seen
samples

0
O Ot—l ot Ot+1
VT W v s VTs VTS
SO:} w Ot—] Ot O t+1
Unfold : T w o w
U U U U
X xt—l xt xt+1



Gated RNNs

- Long Short Term memory Networks (LSTMs)
- Gated Recurrent Units (GRUSs)

- They model next hidden state in a more compact manner

- They are a black box “memory unit”
- Further reading:

https://medium.com/mlireview/understanding-Istm-and-its-diagrams-37e2f4af1714

https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/

St—1 —

GRU/LSTM
Unit

|
@)

s St41


https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNSs: Interactive demo

Sequence classifications using LSTMs
Input: IMDB review text
Output: User rating, positive or negative

Demo in Keras:
o https://colab.research.qgoogle.com/drive/14nioF  2bTxeiOsIXRyAg8Ribj3ic9Eh

(@)



https://colab.research.google.com/drive/14nioF__2bTxeiOslXRyAq8Ribj3ic9Eh

CNN/RNNSs for Audio

Spectrogram can be treated as image, A recurrent layer models the sequence
- No feature engineering (MFCC computation)
- No adding delta or appending frames to capture context

frequency




Challenges

The systems are still vulnerable:

- Image recognition tasks are vulnerable to
Noise that doesn’t affect human perception

- Speech recognition in cars?
Not near perfect.

Deceiving Google’s Cloud Video Intelligence API Built for Summarizing Videos, 2017.
Google's Cloud Vision API Is Not Robust To Noise, 2017.

Onginal image
Output Label: Teapot

Onginal image
Qutput Label: Property

Onginal image
Qutput Label: Airplane

R &
? &5
'-ﬂv.
. _‘9‘3\-

Noisy image (10% impulse noise)
Output Label: Biology

Noisy image (15% impulse noise)
Output Label: Ecosystem

Noisy image (20% impulse noise)
Qutput Label: Bird



Further Reading: Generative Models

e (Generative models: definition

e Popular models:
o Generative Adversarial Networks (GANSs):
o Variational Autoencoders (VAESs):
o Autoregressive Models:
m Wavenet for audio generation
m PixelRNN/PixelCNN for image generation



Further Reading: Miscellaneous

e Batch Normalization: https://arxiv.org/pdf/1502.03167v3.pdf

e Residual/Highway/Dense Nets:
https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918
eed2

e Sequential models with Attention: https://distill.pub/2016/augmented-rnns/

e Connectionist Temporal Classification (CTC) for end-to-end Speech
Recognition

e Capsule Nets by Prof. Hinton

e Meta Learning

e Bayesian/Probabilistic Neural Networks



https://arxiv.org/pdf/1502.03167v3.pdf
https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32
https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32
https://distill.pub/2016/augmented-rnns/

ObEN Inc.

Creating Personal Avatars:

- 3D Face/Body/Dance
- Personalized Speech/Singing
- Chatbot

Internship/Full-time positions:
Projects are a combination of:

- Speech Signal Processing
(With a focus on Speech Synthesis)
- Machine Learning (Deep Learning)

Email: hamid@oben.com

Humanizing Your
Digital Future

Your Personal Al




ObEN'’s Al generated poem using Deep Learning

Oben all the time

The story of it of mine

| said you wanna be your mind with you

| wanna see you say it let me see you love me

| said you see the stars to the way you want to be all the way
They can't see you say

| see the way you see

All | see that we'll be better and | can see

And | said you want to be all the world



