
Deep Learning; A Hands-on Introduction

Hamid Mohammadi
Ph.D. Candidate at OHSU,

Research Scientist at ObEN Inc.

Advanced Topics in Speech Processing Course, UCLA
04/23/2018

Colab Code: https://drive.google.com/open?id=1_FxdrwqS8y8CuZEkFVKdxcLf0BIQgNdI

https://drive.google.com/open?id=1_FxdrwqS8y8CuZEkFVKdxcLf0BIQgNdI

Artificial Intelligence Frameworks
● Rule-based:

○ Design all the rules manually by experts
○ E.g. Expert systems

● Classic Machine Learning:
○ Features are designed by experts
○ Models operate on the features
○ E.g. MFCCs for speech

● Modern ML, Representation Learning:
○ Learn representations using some techniques
○ Models operate on the learned features
○ E.g. Autoencoders

● Modern ML, Deep Learning:
○ Features/mappings are learned from raw data jointly

Outline
● Computational Graphs
● Linear Regression
● Logistic Regression (~Perceptron)
● Shallow Neural Networks
● Deep Neural Networks
● Convolutional NNs
● Recurrent NNs
● Future Readings

Computational Graphs
● A data structure to represent about mathematical expressions
● Example:

Computational Graphs
● Example, Linear Regression

○ Input: x0, x1
○ Predicted Output: y3=w0*x0+w1*x1+w2
○ Original Output: y
○ Parameters: W=w0, w1, w2

x0 x1

y2=y0+y1

y0=w0*x0 y1=w1*x1

y3=y2+w2

Multiply by Weights

Add terms

Add bias

Computational Graphs
● Example, Linear Regression

○ Input: x0, x1
○ Predicted Output: y3=w0*x0+w1*x1+w2
○ Original Output: y
○ Parameters: W=w0, w1, w2

● How to optimize?
○ Minimize Mean-squared error:

■ Loss: J(W)=(y-y3)**2

● How to minimize:
○ Gradient Descent

x0 x1

y2=y0+y1

y0=w0*x0 y1=w1*x1

y3=y2+w2

Multiply by Weights

Add terms

Add bias

Gradient Descent: Estimating Graph Parameters

● At each iteration,
○ take a step proportional to the

negative of the gradient of the error function
with respect to weights at point W

●
●

Gradient Descent: Estimating Graph Parameters

● At each iteration,
○ take a step proportional to the

negative of the gradient of the error function
with respect to weights at point W

●
●

Learning rate Gradient of cost
function at w

Linear Regression
● A linear approach for modelling the relationship between a scalar dependent

variable y and one or more explanatory variables (or independent variables)
denoted X

● Equation
● Some closed-form solutions exists, but we will use gradient descent to

estimate the parameters on a linear/non-linear toy data:
●
●

● Demo in TensorFlow:
○ https://colab.research.google.com/drive/1qO3iJhxC9HBee123LANiZqcGr6bf5OGH

●

https://colab.research.google.com/drive/1qO3iJhxC9HBee123LANiZqcGr6bf5OGH

Single-Layer Neural Networks (Perceptron)
● A.k.a Logistic Regression, a simple linear classifier
● Equation
●
● The model has a hard-decision, to be able to

compute gradients, apply sigmoid on w.x+b
● We intend to estimate the parameters using Gradient Descent

● Demo in TensorFlow:
○ https://colab.research.google.com/drive/11gXVnBPqnZTN8DXLEomRMj7hHubWjMwC
○

https://colab.research.google.com/drive/11gXVnBPqnZTN8DXLEomRMj7hHubWjMwC

Two-Layer Neural Network (Shallow NN)
● Two computations of type where f is a nonlinear function
● Equation

● Regression demo on nonlinear regression data:
https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvcIN5bBfRJ
8fw

● Classification demo on linearly non-separable data:
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq
8RBZ

●

https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvcIN5bBfRJ8fw#scrollTo=NdJmCKKG7YVg
https://colab.research.google.com/drive/1H8ms1Jzeze8ki7FWtszvcIN5bBfRJ8fw#scrollTo=NdJmCKKG7YVg
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq8RBZ
https://colab.research.google.com/drive/1LBQ-EiH3d4hxly492DQdZOd5q7Tq8RBZ

Recap: Parameter Optimization in TensorFlow
● What are input and output? X and Y
● Specify the model architecture (How to connect X to Y using computations

that have parameters)
● Specify a cost function to minimize.
● How to update the parameters? Gradient descent and its variants
● How to regularize the parameters? L1/L2 add to cost function, Dropout

Recap: Parameter Optimization in TensorFlow
● What are input and output? X and Y
● Specify the model architecture (How to connect X to Y using computations

that have parameters)
● Specify a cost function to minimize.
● How to update the parameters? Gradient descent and its variants
● How to regularize the parameters? L1/L2 add to cost function, Dropout

Recap: Parameter Optimization in TensorFlow
● What are input and output? X and Y
● Specify the model architecture (How to connect X to Y using computations

that have parameters)
● Specify a cost function to minimize.
● How to update the parameters? Gradient descent and its variants
● How to regularize the parameters? L1/L2 add to cost function, Dropout

Recap: Parameter Optimization in TensorFlow
● What are input and output? X and Y
● Specify the model architecture (How to connect X to Y using computations

that have parameters)
● Specify a cost function to minimize.
● How to update the parameters? Gradient descent and its variants
● How to regularize the parameters? L1/L2 add to cost function, Dropout

Recap: Parameter Optimization in TensorFlow
● What are input and output? X and Y
● Specify the model architecture (How to connect X to Y using computations

that have parameters)
● Specify a cost function to minimize.
● How to update the parameters? Gradient descent and its variants
● How to regularize the parameters? L1/L2 add to cost function, Dropout

Static vs. Dynamic Computational Graphs
● Static: TensorFlow and Theano, Dynamic: PyTorch
● Both frameworks operate on tensors and view model as directed acyclic graph (DAG)
● Both view any model as a computational graph,
● They differ drastically on how you can define them.
● TF/Theano:

○ “Data as code and code is data”
○ Graph is defined statically before runtime
○ All communication with outer world is performed via tf.Session object and tf.Placeholder
○ Harder to debug and find issues

● PyTorch:
○ things are way more imperative and dynamic
○ you can define, change and execute nodes as you go
○ the framework is more tightly integrated with Python language and feels more native
○ Easier sequence modelling
○ Easier to debug

Deep Neural Networks
Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

“Multilayer feedforward networks are universal approximators”, Hornik et al,
1989.

... ...

Deep Neural Networks
Artificial Neural Networks (ANNs) are a sequence of non-linear mappings

In fact, even two-layered (shallow) neural networks are universal approximators.

... ...

Deep Neural Networks
Deep neural networks refer to 3+ layered neural networks:

Why Deep?
If Shallow Neural Networks are universal approximators, why use deep
architectures?

Why Deep?
If Shallow Neural Networks are universal approximators, why use deep
architectures?

1- The brain has a deep architecture

2- Cognitive processes seem deep

3- Insufficient depth can hurt modeling

Why Deep?
If Shallow Neural Networks are universal approximators, why use deep
architectures?

1- The brain has a deep architecture

- Visual cortex has a sequence of levels ,
- Each level represents the input at a different level of abstraction,
- More abstract features further up in the hierarchy, defined in terms of the

lower-level ones.

Why Deep?

Why Deep?
If Shallow Neural Networks are universal approximators, why use deep
architectures?

2- Cognitive processes seem deep

● Humans organize their ideas and concepts hierarchically,
● Humans first learn simpler concepts and then compose them to represent

more abstract ones,
● Engineers break-up solutions into multiple levels of abstraction and

processing

Why Deep?

Why Deep?
If Shallow Neural Networks are universal approximators, why use deep
architectures?

3- Insufficient depth can hurt modeling

- there exist function families which the required number of nodes may grow
exponentially with the input size [Hastad 1986]
“An Average-case Depth Hierarchy Theorem for Higher Depths”, Hastad 1986.

- Some families of functions which can be efficiently (compactly) represented
with O(n) nodes (for n inputs) for depth d
but for which an exponential number (O(2^n)) of nodes is needed if depth is
restricted to d-1

Difficulties of training deep architectures
The reason deep neural networks did not work before ~2007

- Not enough computational power (cheap GPUs today)
- Not enough data even if computation was not an issue
- Primitive Technology (especially regularization was more primitive)
- Hard to implement (open-source toolkits help reusing code easier)

Technical issues:

- Vanishing gradient: as the error back-propagated, the error gets smaller)
- Prone to local minima: More local minima and more non-linear
- Regularization: Stop memorizing and start generalizing

Difficulties of training deep architectures
The reason deep neural networks did not work before ~2007

- Not enough computational power (cheap GPUs today)
- Not enough data even if computation was not an issue
- Primitive Technology (especially regularization was more primitive)
- Hard to implement (open-source toolkits help reusing code easier)

Technical issues:

- Vanishing gradient: as the error back-propagated, the error gets smaller
- Prone to local minima: more local minima and more complex cost function
- Regularization: more memorizing and less generalizing

Solutions
- Pre-training (obsolete): Rather than random initialization, initialize from an

unsupervised network. Typically using Autoencoders or Restricted Boltzmann
Machines (RBMs)

-

Solutions
- Pre-training (obsolete): Rather than random initialization, initialize from an

unsupervised network. Typically using Autoencoders or Restricted Boltzmann
Machines (RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout
-

DNN with Relu
ReLU and the variance activation functions have gained popularity recently

ReLU well for speech and image processing tasks

Faster convergence, Better convergence. Goes well with Dropout.

Solutions
- Pre-training: Rather than random initialization, initialize from an unsupervised

network. Typically using Autoencoders or Restricted Boltzmann Machines
(RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout
- Regularization: L1, L2, Sparseness, Dropout

- Adding a penalty term to the cost function

L1 vs. L2

Solutions
- Pre-training: Rather than random initialization, initialize from an unsupervised

network. Typically using Autoencoders or Restricted Boltzmann Machines
(RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout
- Regularization: L1, L2, Sparse, Dropout

- Adding a penalty term to the cost function

TF: Deep Neural Network; L1

w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))

b1 = tf.Variable(tf.random_normal([hidden_layer_size]))

w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))

b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid(tf.add(tf.matmul(x, w1), b1))

y_ = tf.add(tf.matmul(h, w2), b2)

loss function

loss = tf.reduce_mean(tf.square(y - y_)+a*(tf.abs(w1)+tf.abs(w2)))

Solutions
- Pre-training: Rather than random initialization, initialize from an unsupervised

network. Typically using Autoencoders or Restricted Boltzmann Machines
(RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout
- Regularization: L1, L2, Sparse, Dropout

- Adding a penalty term to the cost function

TF: Deep Neural Network; L2

w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))

b1 = tf.Variable(tf.random_normal([hidden_layer_size]))

w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))

b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid(tf.add(tf.matmul(x, w1), b1))

y_ = tf.add(tf.matmul(h, w2), b2)

loss function

loss = tf.reduce_mean(tf.square(y - y_)+a*(w1**2+w2**2))

L1 vs. L2 regularization

Dropout
Randomly drop nodes with probability p

It is a form of model averaging (averaging a lot of models)

Solutions
- Pre-training: Rather than random initialization, initialize from an unsupervised

network. Typically using Autoencoders or Restricted Boltzmann Machines
(RBMs)

- Better transfer function: ReLU, Leaky ReLU, R/PReLU, Maxout
- Regularization: L1, L2, Sparse, Dropout

- Adding a penalty term to the cost function

 # TF: Deep Neural Network; Dropout

w1 = tf.Variable(tf.random_normal([1, hidden_layer_size]))

b1 = tf.Variable(tf.random_normal([hidden_layer_size]))

w2 = tf.Variable(tf.random_normal([hidden_layer_size, 1]))

b2 = tf.Variable(tf.random_normal([1]))

h = tf.sigmoid(tf.add(tf.matmul(x, w1), b1))

dropped = tf.nn.dropout(h,0.5)

y_ = tf.add(tf.matmul(h, w2), b2)

loss function

loss = tf.reduce_mean(tf.square(y - y_))

Dropout

Gradient Descent variants
- Stochastic Gradient Descent (SGD): Compute gradients over a batch of

samples and average them.
- Momentum
- Adadelta
- Adagrad
- Rmsprop
- BFGS

http://sebastianruder.com/optimizing-gradient-descent/

The effect of dropout and momentum

Convolutional Neural Networks (CNNs)
In CNNs, layers have sparse connectivity by design

Better suited for correlated features (Image, Spectrogram, etc)

CNNs
Weight sharing

https://colah.github.io/posts/2014-07-Understanding-Convolutions/

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/

CNNs

CNNs
Weight matrix computation W.x

Regular fully-connected weight matrix Convolutional weight matrix

CNNs

CNNs: interactive demo
Demo in Keras:

https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSl-WwQrqEWQU
S#scrollTo=BFiZwlTJoVhW

https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSl-WwQrqEWQUS#scrollTo=BFiZwlTJoVhW
https://colab.research.google.com/drive/1rsjU9s0_JcNzi7DSBDNSl-WwQrqEWQUS#scrollTo=BFiZwlTJoVhW

Recurrent Neural Networks
RNN: For modeling sequence where adjacent frames are not independent from
each other

Models dynamics by having a state which is computed from the previously seen
samples

Gated RNNs
- Long Short Term memory Networks (LSTMs)
- Gated Recurrent Units (GRUs)
- They model next hidden state in a more compact manner
- They are a black box “memory unit”
- Further reading:

- https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs: Interactive demo
● Sequence classifications using LSTMs
● Input: IMDB review text
● Output: User rating, positive or negative
● Demo in Keras:

○ https://colab.research.google.com/drive/14nioF__2bTxeiOslXRyAq8Ribj3ic9Eh
○

https://colab.research.google.com/drive/14nioF__2bTxeiOslXRyAq8Ribj3ic9Eh

CNN/RNNs for Audio
Spectrogram can be treated as image, A recurrent layer models the sequence
- No feature engineering (MFCC computation)
- No adding delta or appending frames to capture context

Challenges
The systems are still vulnerable:

- Image recognition tasks are vulnerable to
Noise that doesn’t affect human perception

- Speech recognition in cars?
Not near perfect.

Deceiving Google’s Cloud Video Intelligence API Built for Summarizing Videos, 2017.
Google's Cloud Vision API Is Not Robust To Noise, 2017.

Further Reading: Generative Models
● Generative models: definition
● Popular models:

○ Generative Adversarial Networks (GANs):
○ Variational Autoencoders (VAEs):
○ Autoregressive Models:

■ Wavenet for audio generation
■ PixelRNN/PixelCNN for image generation

Further Reading: Miscellaneous
● Batch Normalization: https://arxiv.org/pdf/1502.03167v3.pdf
● Residual/Highway/Dense Nets:

https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918
ee32

● Sequential models with Attention: https://distill.pub/2016/augmented-rnns/
● Connectionist Temporal Classification (CTC) for end-to-end Speech

Recognition
● Capsule Nets by Prof. Hinton
● Meta Learning
● Bayesian/Probabilistic Neural Networks

https://arxiv.org/pdf/1502.03167v3.pdf
https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32
https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32
https://distill.pub/2016/augmented-rnns/

ObEN Inc.
Creating Personal Avatars:

- 3D Face/Body/Dance
- Personalized Speech/Singing
- Chatbot

Internship/Full-time positions:
Projects are a combination of:

- Speech Signal Processing
(With a focus on Speech Synthesis)

- Machine Learning (Deep Learning)

Email: hamid@oben.com

ObEN’s AI generated poem using Deep Learning
Oben all the time

The story of it of mine

I said you wanna be your mind with you

I wanna see you say it let me see you love me

I said you see the stars to the way you want to be all the way

They can't see you say

I see the way you see

All I see that we'll be better and I can see

And I said you want to be all the world

