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Outline
• Artificial Neural Networks (ANNs)

• MNIST classification task

• Unsupervised Feature Learning

• various ANN architectures

• Evaluations

• Supervised Feature Mapping

• various ANN architectures

• Evaluations
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ANN Architecture
• ANN is composed 

of multiple layers

• Layers perform 
non-linear 
transformations

•y=g(Wx+b)

http://bengio.abracadoudou.com/lectures/old/tex_ann.pdf
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Backpropagation
• Estimating 

model
Parameters
Ws and bs

http://bengio.abracadoudou.com/lectures/old/tex_ann.pdf
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Backpropagation

• Criterion for ANN

• Mean Squared Error:

•Error=(ŷ-y)^2

• Cross-entropy

•Error=-sum(ŷlog(y)+
       (1-ŷ)log(1-y))
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Backpropagation

• Regularization:

• L1: Criterion = CE + |W|

• L2: Criterion = CE + W^2

• Dropout: randomly omitting subsets of 
features at each iteration with probability 
p=[0.0,0.5]
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MNIST Corpus
• 28x28 pixels, pixel values range from 0 to 1

• Contains 70,000 images

• 50,000 training set

• 10,000 validation set

• 10,000 test set

• Task: Classify 10 digit classes
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ANN for MNIST
• Two-layer ANN with 100 hidden units
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Feature Learning

• Usual Machine Learning applications have 
two steps

Feature ExtractionData Machine Learning

Prior Knowledge
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Feature Learning

• Usual Machine Learning applications have 
two steps

Feature ExtractionData Machine Learning

Prior Knowledge

how many circles?

how many straight horizontal lines? how long?

how many straight vertical lines? how long?
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Feature Learning

Feature ExtractionLabeled
Data Machine Learning

Unsupervised 
Feature Learning

Unlabeled
 Data
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ANN for Feature Learning

• How to use ANNs for Feature Learning?

• ONE solution is to use networks called 
Autoencoders

• These networks try to reconstruct the input

• They are unsupervised, no labels needed

Input Reconstructed Input
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Autoencoders
• These networks try to

 reconstruct the input

• The model’s equation:
x_rec=g(W’g(Wx+b)+b’)

• where W’=transpose(W) 
(tied weights)

input

reconstructed
 input
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Autoencoders
• Implementation:

• Python 2.7

• Theano 0.6
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Autoencoders
• AE-1000 weights (1000 hidden units)
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AE Regularization
• AE-1000-L1 weights
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AE Regularization
• AE-1000-L2 weights

Tuesday, February 3, 15



AE Regularization
• AE-1000-Dropout-0.1
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http://r9y9.github.io/blog/2014/03/06/restricted-boltzmann-machines-mnist/
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Pretraining ANN

• AE training

• No pre-training: Initializing ANN weights 
from random numbers

• Pre-training: Initializing ANN weights from 
AE weights

Input Reconstructed Input

Input class labels
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ANN for MNIST
• ANN with 1000 hidden units
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Autoencoders
• ANN pre-trained with regular AE

•
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AE Regularization
• ANN pre-trained with regular AE-L1-0.001

•
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AE Regularization
• ANN pre-trained with regular AE-L2-0.001
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AE Regularization
• ANN pre-trained with regular AE-Dropout-0.1
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AE Regularization
• ANN pre-trained with regular AE-Dropout-0.5
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Stacked Autoencoders

https://deeplearningworkshopnips2010.files.wordpress.com/2010/09/nips10-workshop-tutorial-final.pdf

Different Levels of
 Abstraction
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Evaluation
Model Notes Reconstruction Classification Error %

ANN 1000 - - 1.84%

ANN 1000 Pre-trained AE 0.00101 1.65%

ANN 1000 Pre-trained AE-L1-0.001 0.00131 1.72%

ANN 1000 Pre-trained AE-L2--0.001 0.00194 1.66%

ANN 1000 Pre-trained AE-Dropout-0.1 0.00256 1.66%

ANN 1000 Pre-trained AE-Dropout-0.5 0.01556 1.70%

DNN 1000-1000 - - 1.74%

DNN 1000-1000 AE-Dropout-0.1-0.2 0.00411 1.46%

DNN 1000-1000-1000 - - 1.72%

DNN 1000-1000-1000 AE-Dropout-0.1-0.2-0.3 0.00952 1.40%

100 supervised training iterations,
 lr=0.1, batch=10, SGD

15 unsupervised training iterations,
 lr=0.05, batch=10, SGD
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Evaluation
• 49,000 images for unsupervised training

• 1000 image for supervised training
Model Notes Classification Error %

ANN 100 - 12.92%

ANN 1000 - 13.47%

DNN 1000-1000-1000 - 12.71%

ANN 1000 Pre-trained AE-Dropout-0.1 10.36%

DNN 1000-1000-1000 AE-Dropout-0.1-0.2-0.3 8.75%

100 supervised training iterations,
 lr=0.1, batch=10, SGD

15 unsupervised training iterations,
 lr=0.05, batch=10, SGD
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Feature Mapping
• The usual application of DNN is 

classification

• We will propose some training methods for 
mapping (regression)

• These have the potential to be used in voice 
conversion
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Feature Mapping

• In this study, we will perform our 
evaluations on MNIST 

• x: half left images

• y: half right images
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Feature Mapping
• Simple ANN mapping

source target
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Feature Mapping
• The previously proposed approach for VC 
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Feature Mapping

• We propose Correlated AEs

• Background

• Canonical Correlation Analysis

• Two random variables X1 and X2

• find W1 and W2 such that W1.X and W2.X2 
are maximally correlated
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Feature Mapping

• Deep CCA

• The hidden layer outputs have the highest 
correlation

X1 X2
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Feature Mapping

• DCCA does not have good reconstruction

• We propose join the cost of reconstruction 
and DCCA

X1 X2

reconstruction 
criterion

reconstruction 
criterion
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Feature Mapping
• 1000 labeled, 49,000 unlabeled

Model Notes Reconstruction

ANN 100 - 0.0724

ANN 100 AE-Dropout-0.1 0.0554

ANN 100 AE-Dropout-0.1+DCCA 0.0463

400 supervised training iterations,
 lr=0.1, batch=20, SGD

15 unsupervised training iterations,
 lr=0.1, batch=20, SGD
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