Making Conversational Vowels More Clear

Seyed Hamidreza Mohammadi Alexander Kain Jan van Santen

Center for Spoken Language Understanding

Background

- 28 million in U.S. have hearing loss
 - understanding speech in noise is difficult
 - primary strategy is hearing aid
 - frequency band amplification and shifting
 - dynamic processing
 - can we do more?

Clear speech

- speakers adopt special *clear* speech style (vs. *conversational*) when talking to impaired listeners
 - due to hearing loss, background noise, or both
- studies have shown the increased intelligibility of clear speech in many conditions [Picheny 1985, Ferguson 2002 & 2004]
 - speakers make CLR speech in different ways, and some can not produce it [Ferguson 1999]

CLR speech: prosody

- fundamental frequency with increased range and mean
- increased consonant-vowel energy ratio
- prolonged phoneme durations
- longer pauses
- decreased speaking rate

CLR speech: spectrum

- expanded vowel formant frequency space
- overall higher energy in the 1000-3150 Hz frequency band
- more aspirated stops and fewer alveolar flaps

Intelligibility features

- previously, we investigated the degree to which various acoustic features cause an increase in speech intelligibility [Kain 2008]
 - *hybridized* CNV and CLR speech
 - energy trajectory, F0 trajectory, phoneme durations, short-term spectra, pauses
 - perceptual intelligibility testing

Hybridization results

- For one male en_US speaker,
 - CNV = 72%
 - CLR = 85%
 - CNV with CLR spectrum and duration = 82%
 - energy trajectory, F0 trajectory, and pauses not relevant
 - duration alone was not statistically significant

Research question

- can we automatically increase the intelligibility of CNV vowels?
 - use a voice conversion method that maps CNV spectra towards CLR spectra
 - no duration modeling for now
 - speaker-dependent

Outline

- data corpus
- formant space analysis
- LSF space analysis
- perceptual experiment
- conclusion & future work

Corpus

- recorded a corpus of 242 en_US CVC words, uttered by one male speaker
 - each word recorded in CNV and CLR styles, and two renditions (242 x 2 x 2=968 tokens)
 - for CNV speech, the speaker was asked to speak as if talking with a friend at a natural pace
 - for CLR speech, the speaker was asked to "enunciate consonants more carefully and with greater effort than in CNV speech and avoid slurring words together"

Corpus

- CVC words were located in a neutral carrier phrase immediately following the phoneme /d/:
 - "I know the meaning of the word **moon**"
- phonetically labeled by hand
- formants for the last word are extracted and hand corrected

CNV & CLR Formants

CNV

CLR

Mapping CNV to CLR

CNV to CLR

Consistency

Consistency measure

determinant of the weighted covariance matrix (volume)

$$WeightedCov_{x'} = \frac{1}{\sum w_{i,x'}} \sum_{i=1}^{N} w_{i,x'} (x_i - \overline{x})(y_i - \overline{y})$$

$$w_{i,x'} = \exp(\frac{-\|x_i - x'\|^2}{2\sigma^2})$$

Mapping

- frame-by-frame mapping of CNV FI-F2 formant feature sequences of vowel trajectories, using a joint-density Gaussian mixture model (JDGMM) [Kain 1998]
- divided all available data into training (218 vowels) and test (24 vowels) sets using a 10-fold crossvalidation scheme

Mapping Function

Actual Mapping

JDGMM Mapping, Q=8

Experiment

Table 1: Average RMSE errors in Hz

Method	test	train
no mapping	193.84	194.01
JDGMM Q=8, unsupervised	137.98	127.70
JDGMM Q=8, supervised	132.44	125.17

LSF domain

- repeated analysis for Line Spectral Frequencies
 - 18 LSF coefficients
- for visualization purposes ONLY, LSFs are reduced to 2 dimension using PCA

CNV & CLR LSFs

CNV

CLR

Mapping CNV to CLR

CNV to CLR

Consistency

Mapping

Actual Mapping

JDGMM Mapping, Q=3

Experiments

Table 2: Average LSD errors in dB

Method	test	train
no mapping	9.60	9.59
JDGMM Q=3	5.10	4.53
JDGMM Q=3, PCA=12	5.18	4.84

Perceptual experiment

• seven conditions

I: CNV, 2: CLR,
3: LSF-vocoded CNV (VCNV),
4: LSF-vocoded CLR (VCLR),
5: CNV with mapped spectrum (MAP-S),
6: CNV with CLR "oracle" duration (MAP-D), and
7: CNV with mapped spectrum and CLR "oracle" duration (MAP-SD)

• total of 49 test words x 7 conditions = 343 stimuli

- loudness-normalized via rmsA
- added I2-talker babble noise with SNR of +3 dB and -2 dB

Listeners

- 98 Amazon Mechanical Turk Listeners
 - approval ratings of at least 90% and located in the U.S.
- asked participant to "listen to the word in noise and select one of the vowel classes based on what you heard"
 - clean reference samples were available at any time

Intelligibility results

Table 3: Intelligibility rate of each condition

		-
Configuration	-2 dB SNR	+3 dB SNR
CLR	74.92%	80.46%
VCLR	71.42%	78.71%
MAP-SD	56.26%*	$58.60\%^{\dagger}$
MAP-S	49.85%	59.76% [†]
MAP-D	48.10%	56.26%
VCNV	45.18%	52.47%
CNV	45.48%	56.55%

Conclusion

- analyzed CNV and CLR data in formant frequency domain and LSF domain
- trained a mapping function for converting CNV vowels to resemble CLR vowels
- results show a modest increase in intelligibility

Future work

- use a duration model
- this experiment is for one speaker only can the mapping be speaker-independent?
- use a higher quality vocoder and a more sophisticated mapping method

Thank you!