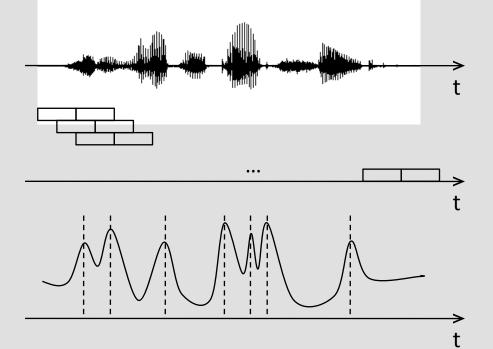
KNNDIST: A Non-Parametric Distance Measure for Speaker Segmentation

Seyed Hamidreza Mohammadi¹, Hossein Sameti², Mahsa Sadat Elyasi Langarani², Amirhossein Tavanaei²

¹ Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR


Speech Processing Laboratory, Sharif University of Technology, Tehran, Iran

Introduction

- Speaker Segmentation: Tries to extract the longest possible homogenous segments in a conversation.
- Speaker Segmentation is the first essential part in speaker diarization systems.
- Speaker Segmentation methods:
 - Model-based
 - Distance-based

- Popular distance-based approach:
 - I. Slide window over feature sequence,
 - compute distance between two parts of window,
 - III. Peaks in the curve are changing points

- In the preprocessing phase, silence is usually removed completely.
- In this study, it is proposed that nonvowel should also be removed.
- The motivation was to increase the accuracy of parameter estimation in distance computation.

• Common distances used:

-GLR (Generalized Likelihood Ratio)

- KL (Kullback-Leibler)
- -BIC (Bayesian Information Criterion)
- Advantage:
 - Parametric (Gaussian assumption) so easy to compute
- Disdvantages:
 - Parametric so not so accurate parameter estimation when data window is small

KNNDIST

- In parametric distances, the distance is computed between probabilistic distributions.
- To overcome parametric distances, a non-parametric method is used.
- The idea is taken from k-nearestneighbor classification.
- The distance is computed from the mean distances of the k-nearest-neighbor.

$$\Delta BIC = \frac{N_Z}{2} \log \left| \sum_Z \right| - \frac{N_X}{2} \log \left| \sum_X \right| - \frac{N_Y}{2} \log \left| \sum_Y \right|$$
$$-\frac{\lambda}{2} \left(d + \frac{1}{2} d \left(d + 1 \right) \right)$$

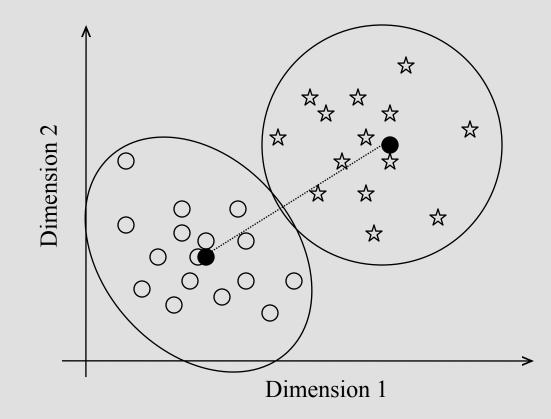


Figure - Parametric distances

$KNNDIST(X, Y, k) = \sum_{k} \min_{k} \left(euclid(x_{m}, y_{n}) \right), m \in M, n \in N$

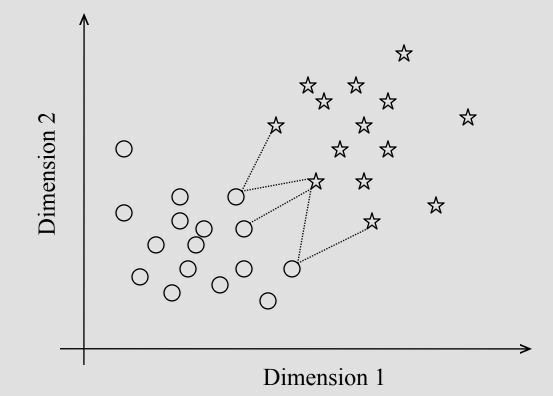


Figure - KNNDIST

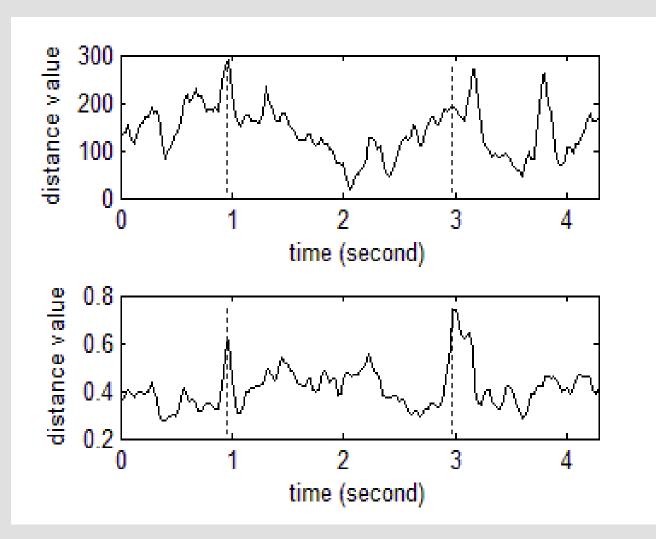


Figure – computed curves GLR (top) KNNDIST (bottom)

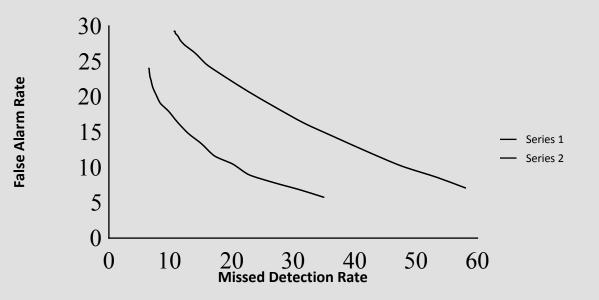


Figure – DET curve for BIC vs. KNNDIST

<i>Rate)</i> Window Length (seconds)	Database	Results			
		BIC		KNNDIST	
		MDR	FAR	MDR	FAR
0.75	TIMIT	23.35%	37.67%	8.15%	37.88%
1	TIMIT	14.78%	33.05%	5.80%	34.27%
1.5	TIMIT	10.73%	29.25%	6.53%	25.29%
2	TIMIT	8.15%	20.80%	7.24%	17.21%
3	TIMIT	13.01%	14.42%	14.14%	17.56%
2	AMI	26.13%	48.84%	26.19%	37.33%
	IS1008a				
2	AMI	29.72%	53.98%	28.83%	39.69%
	ES2008b				

Table – Results (False Alarm Rate and Missed Detection

Conclusion

- GOOD for applications with small window length (like speaker segmentation).
- NOT GOOD for applications that use bigger window length (like speaker clustering) because of higher computational cost and lower accuracy.
- TODO:
 - -determine best "k" automatically
 - Use another distance instead of Euclidian to find
 k nearest neighbors