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ABSTRACT

In this study, we trained a deep autoencoder to build compact rep-
resentations of short-term spectra of multiple speakers. Using this
compact representation as mapping features, we then trained an ar-
tificial neural network to predict target voice features from source
voice features. Finally, we constructed a deep neural network from
the trained deep autoencoder and artificial neural network weights,
which were then fine-tuned using back-propagation. We compared
the proposed method to existing methods using Gaussian mixture
models and frame-selection. We evaluated the methods objectively,
and also conducted perceptual experiments to measure both the con-
version accuracy and speech quality of selected systems. The results
showed that, for 70 training sentences, frame-selection performed
best, regarding both accuracy and quality. When using only two
training sentences, the pre-trained deep neural network performed
best, regarding both accuracy and quality.

Index Terms— voice conversion, pre-training, deep neural net-
work, autoencoder

1. INTRODUCTION

To solve the problem of voice conversion (VC), various methods
have been proposed. Most methods are generative methods which
parametrize speech in short-time segments and map source speaker
parameters to target speaker parameters [1]. One group of generative
VC approaches use Gaussian mixture models (GMM). GMMs per-
form a linear multivariate regression for each class and weight each
individual linear transformation according to the posterior probabil-
ity that the input belonged to a specific class [2]. Kain and Macon
[3] proposed to model the source and target spectral space jointly,
using a joint-density GMM (JDGMM). This approach has the ad-
vantage of training mixture components based on the source-target
feature space interactions. Toda et al. [4] extended this approach by
using a parameter generation algorithm, which extends modeling to
the dynamics of feature trajectories.

Another group of generative VC approaches use artificial neural
networks (ANNs). Simple ANNs have been used for transforming
short-time speech spectral features such as formants [5], line spectral
features [6], mel-cepstrum [7], log-magnitude spectrum [8] and ar-
ticulatory features [9]. Various ANN architectures have been used
for VC: ANNs with rectified linear unit activation functions [8],
bidirectional associative memory (a two-layer feedback neural net-
work) [10], and restricted Boltzman machines (RBMs) and their
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variations [11, 12, 13]. In general, both GMMs and ANNS are uni-
versal approximators [14, 15]. The non-linearity in GMMs stems
from forming the posterior-probability-weighted sum of class-based
linear transformations. The non-linearity in ANNs is due to non-
linear activation functions (see also 2.3). Laskar et al. [16] compared
ANN and GMM approaches in the VC framework in more detail.

Recently, deep neural networks (DNNs) have shown perfor-
mance improvements in the fields of speech recognition [17] and
speech synthesis [18, 19, 20]. Four-layered DNNs have been previ-
ously proposed for VC but no significant difference was found be-
tween using a GMM and a DNN [6]. More recently, three-layered
DNNs have achieved improvements in both quality and accuracy
over GMMs when trained on 40 training sentences [7]. The previous
two approaches use DNNs with randomly weight initialization; how-
ever, it has been shown in the literature that DNN training converges
faster and to a better-performing solution if their initial parameter
values are set via pre-training instead of random initialization [21].
Pre-training methods use unsupervised techniques such as stacked
RBMs and autoencoders (AEs) [22, 23].

Pre-trained DNNs have also been applied to VC in a recent
study [13], in which stacked RBMs were used to build high-order
representations of cepstra for each individual speaker, using 63 min-
utes of speech for training the RBMs. The source speaker’s repre-
sentation features were then converted to the target speaker’s rep-
resentation features using ANNs, and the combined network was
fine-tuned. However, we speculate that their approach may not be
feasible for a small number of training sentences because (1) it em-
ploys high-dimensional features, and (2) it requires training of two
separate RBMs, one for the source and one for the target speaker. To
address these shortcomings, we propose to (1) train a deep autoen-
coder (DAE) for deriving compact representations of speech spectral
features, and (2) to train the DAE on multiple speakers (which will
not be included in VC training and testing), thus creating a speaker-
independent DAE. The trained DAE will later be used as a compo-
nent during the pre-training of the final DNN.

The remainder of the paper is organized as follows: In Section 2,
we describe the network architectures used in this study. In Sub-
section 2.1, we explain the architecture of shallow ANNs. In Sub-
section 2.2, we explain the speaker-independent DAE architecture.
In Subsection 2.3, we explain the architecture of the final DNN. In
Section 3, we present the evaluations that were performed to com-
pare the proposed architecture to baseline methods. First, in Sub-
section 3.1, we will explain all the design decisions and system con-
figurations. Then, in Subsection 3.2, we present the objective eval-
uations. The subjective evaluations are presented in Subsection 3.3.
The conclusion of the study is presented in Subsection 4.



2. NETWORK ARCHITECTURES

2.1. Artificial Neural Network

In this section, let Xyyxp = [X1,..,Xn]', where x =
[€1,...,2zp]", represent N examples of D-dimensional source fea-
ture training vectors. Using a parallelization method (e. g. time-
alignment and subsequent interpolation), we can obtain the asso-
ciated matrix Yyxp = [y1,...,yn] . representing target feature
training vectors.

An ANN consists of K layers where each layer performs a linear
or non-linear transformation. The k™ layer performs the following
transformation,

hit1 = f(Wihi + by), (1)

where hy, hiy1, Wy, by, are the input, output, weights, bias of
the current layer, respectively, and f is an activation function. By
convention, the first layer is called the input layer (with h; = x), the
last layer is called the output layer (with ¥ = hx 1), and the middle
layers are called the hidden layers. The objective is to minimize an
error function, often the mean squared error

E=|y-yl* @

The weights and biases can be trained by minimizing the error

function using stochastic gradient descent. The back-propagation

algorithm is used to propagate the errors to the previous layers. In

this study, we use a two-layered ANN as mapping function (see Fig-
ure 1a) during pre-training of the DNN.

2.2. Deep Autoencoder

ANNSs are usually trained with a supervised learning technique, in
which we have to know the output values (in our case target speaker
features), in addition to input values (in our case source speaker fea-
tures). An AE is a special kind of neural network that uses an un-
supervised learning technique, i..e. we only need to know the input
values. In the AE, the output values are set to be the same as the input
values. Thus, the error criterion becomes a reconstruction criterion
with the goal of reconstructing the input using the neural network,
allowing the AE to learn an efficient encoding of the data. This un-
supervised learning technique has proven to be effective for deter-
mining the initial network weight values for the task of supervised
deep neural network training; this process is called pre-training.

A simple AE has an identical architecture of a two-layered
ANN. The first layer is usually called the encoding layer and the
second layer is called the decoding layer. The encoding part of a
simple AE maps the input to an intermediate hidden representation.
The decoder part of an AE reconstructs the input from the interme-
diate representation. The first and second layers’ weights are tied
W, = W3, where T represents matrix transpose.

The task of an AE is to reconstruct the input space. During AE
training in its simplest form, weights are optimized to minimize the
average reconstruction error of the data

E = ||h; —hs]|?, 3)

where hj is the output of the last layer of the network when the input
is h; = x. However, this training schema may not result in extract-
ing useful features since it may lead to over-fitting. One strategy to
avoid this phenomenon is to modify the simple reconstruction crite-
rion to the task of reconstruction of clean input from noise-corrupted
input [23]. The de-noising error function is

E = ||x — hs|?, )

(c) Deep Neural Network

Fig. 1: Network architectures. The color of the nodes represent:
blue for input features, red for output features, yellow for compact
features, and green for hidden/intermediate values. Layers include
a non-linear activation function, unless labeled with a diagonal line,
indicating a linear activation function.

where h3 is the output of the last layer of the network when the input
is hy = x 4 n, and n is a Gaussian corruptor.

In this study, we compute a compact representation of spectral
features using a stacked de-noising autoencoder (DAE). We obtain a
deep structure by training multiple AEs layer-by-layer and stacking
them [23]. The first AE is trained on the input. The input is then en-
coded and passed to the next AE, which is trained on these encoded
values, and so on. Finally, the AEs are stacked together to form a
DAE, as shown in Figure 1b.

2.3. Deep Neural Network

Having an ANN with more than two layers (X > 2) could allow
the network to capture more complex patterns. Typically, the higher
number of parameters makes parameter estimation more difficult, es-
pecially if we start the training from random initial weight and bias
values. In the following experiment, we will create a DNN with
a structure that is equivalent to first encoding the spectral features
using DAE, then mapping the compact intermediate features using a
shallow ANN, and finally decoding the mapped compact features us-
ing the DAE (see Figure 1c). The entire structure can effectively be
regarded as a pre-trained DNN, whose parameters are further fine-
tuned by back-propagation (without any weight tying).



feature \ mapping H FS \ GMM \ ANN \ DNN ‘
MCEP 6.83 (0.31) | 6.90(0.31) | 6.85(0.34) | 6.83 (0.31)
DMCEP 7.05(0.28) | 6.93(0.29) | 6.89 (0.29) -
(a) large training set
feature \ mapping H FS ‘ GMM ‘ ANN ‘ DNN ‘
MCEP 7.60 (0.35) | 8.31(0.29) | 7.58 (0.28) | 7.40 (0.30)
DMCEP 7.57 (0.31) | 7.90 (0.29) | 7.46 (0.26) -

(b) small training set

Table 1: Average test error between converted and target mel-warped log-spectra in dB (with standard deviations in parentheses).

3. EXPERIMENT

3.1. Training

A corpus of eleven speakers was used in this study. Of these, ap-
proximately 1-2 hours of speech of seven speakers was used for
training the speaker-independent DAE. The remaining four speak-
ers (two males: M1, M2, two females: F1, F2) were used for testing
the DAE, and for training and testing the voice conversion system.
We selected two Harvard sentences as a “small” training set, and
70 Harvard sentences as a “large” training set. For testing, we used
20 conversational sentences. We considered four different conver-
sions: two intra-gender (M1—M2, F2—F1) and two cross-gender
(M2—F2, and F1—-M1).

We used the SPTK toolkit [24] to extract the 24™M-order mel-
cepstrum (MCEP). The DAE is composed of three stacked AEs with
sizes 100, 40, 15. The first AE is a de-noising AE with a Gaussian
corruptor [23]. The second and third AEs are contractive AEs, which
have shown to outperform other regularized AEs [25]. The activa-
tion functions are sigmoid, except for the last layer, which uses a
linear activation function. The number of iterations during training
of each AE was set to 1,000 with a mini-batch size of 20. The test
error of the network is monitored using a portion of the corpus that
is excluded from training. The learning rate was set to 0.01 and de-
cayed in each iteration. We refer to the compact features at the last
layer as deep MCEPs (DMCEPs).

We used four mapping methods in our experiment: Frame se-
lection (FS) [26], IDGMM [4], two-layered ANN, and the proposed
DNN. FS is a memory-based approach similar to the unit-selection
approach in text-to-speech synthesis. Hyper-parameters (e. g. the
number of mixture components of the JDGMM) were determined
based on cross-validation objective scores and informal perceptual
tests. For training the DNN, we first trained ANNs that map DM-
CEPs derived from the source and target speakers. Then, the final
DNN was constructed by concatenating the encoding DAE, followed
by the mapping ANN, and finally the decoding DAE, using the origi-
nal networks’ weights and biases. The DNN is then fine-tuned using
back-propagation with a mini-batch size of 20 and learning rate of
0.002. The network error was monitored, and training was stopped
before overfitting occurred. The DAE, the ANN, and the DNN were
trained using the pylearn2 toolkit [27].

3.2. Objective Evaluation

We performed objective evaluations using the mel-scaled log-
spectral distance in dB. First, we measured the reconstruction error
of the trained DAEs on the four voice conversion speakers’ test set;

the average error was 2.12 dB. Second, we trained the four map-
ping models on the small training set and on the large training set,
for each of the four conversions. We then compared the conversion
outputs and the targets, averaged over all conversions. The results
are shown in Table 1. As an upper bound, we calculated the average
distance between the original source and target speakers’ spectral
envelopes to be 10.48 dB. For the large training set, we observed
that, DNN and FS performed best of the four mapping methods, al-
though the differences were not significant. For the small training
set, the performance gap between DNN and other mapping methods
is larger. This is likely due to the semi-supervised learning aspect of
the DNN. Even using a shallow ANN on DMCEP features resulted
in good performance, likely due to the efficient encoding produced
by the DAE.

3.3. Subjective Evaluation

To subjectively evaluate voice conversion performance, we per-
formed two perceptual tests: the first test measured speech quality
and the second test measured conversion accuracy (also referred to
as speaker similarity between conversion and target). The listening
experiments were carried out using Amazon Mechanical Turk [28],
with participants who had approval ratings of at least 90% and were
located in North America. We have omitted the ANN mapping
method to reduce the complexity of the subjective evaluation.

3.3.1. Speech Quality Test

To evaluate the speech quality of the converted utterances, we con-
ducted a comparative mean opinion score (CMOS) test. In this test,
listeners heard two utterances A and B with the same content and
the same speaker but in two different conditions, and are then asked
to indicate wether they thought B was better or worse than A, us-
ing a five-point scale consisting of +2 (much better), +1 (somewhat
better), O (same), -1 (somewhat worse), -2 (much worse). The test
was carried out identically to the conversion accuracy test. The two
conditions to be compared differed in exactly one aspect (different
features or different mapping methods). The experiment was admin-
istered to 40 listeners with each listener judging 20 sentence pairs.
Three trivial-to-judge sentence pairs were added to the experiment
to filter out any unreliable listeners.

Listeners’ average response scores are shown in Figure 2. The
VOC configuration represents the vocoded target (added as a base-
line). We did not include FS for the small training set because
the quality of the generated speech was poor as described in Sec-
tion 3.2. The statistical analyses were performed using one-sample
t-tests. For the large training set, FS performed statistically signifi-
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Fig. 2: Speech quality, with nodes showing a specific configuration, the edges showing comparisons between two configurations, the arrows
pointing towards the configuration that performed better, and asterisks showing statistical significance.

cantly better compared to DNN (p < 0.05), which shows the effec-
tiveness of memory-based approaches when sufficient data is avail-
able. JDGMM also performed slightly better than DNN, but not
significantly. For the small training set, the results showed that us-
ing DMCEP features resulted in a slightly better quality score com-
pared to MCEPs when a JDGMM was used. DNNss performed better
but no statistical significant difference was found between DNN and
JDGMM.

3.3.2. Conversion Accuracy Test

To evaluate the conversion accuracy of the converted utterances, we
conducted a same-different speaker similarity test [29]. In this test,
listeners heard two stimuli A and B with different content, and were
then asked to indicate wether they thought that A and B were spo-
ken by the same, or by two different speakers, using a five-point
scale consisting of +2 (definitely same), +1 (probably same), O (un-
sure), -1 (probably different), and -2 (definitely different). One of
the stimuli in each pair was created by one of the three mapping
methods, and the other stimulus was a purely MCEP-vocoded con-
dition, used as the reference speaker. Half of all pairs were created
with the reference speaker identical to the target speaker of the con-
version (the “same” condition); the other half were created with the
reference speaker being of the same gender, but not identical to the
target speaker of the conversion (the “different” condition). The ex-
periment was administered to 40 listeners, with each listener judging
40 sentence pairs. Four trivial-to-judge sentence pairs were added to
the experiment to filter out any unreliable listeners.

Listeners’ average response scores (scores in the “different” con-
ditions were multiplied by —1) are shown in Figure 3. The statisti-
cal analyses were performed using Mann-Whitney tests [30]. For
the large training set, FS performed significantly better compared to
JDGMM (p < 0.05). When compared to DNN, FS performed better
but no statistically significant difference was found. DNN also per-
formed better than JDGMM but the difference was also not statisti-
cally significant. The superiority of the FS method is due to the high
number of sentences (70 sentences) that were available in the large
training set. One of the problems of GMM and ANN approaches
is that they average features to generate the target features. How-
ever, FS is a memory-based approach, and thus it performs better
in this task because of the fact that raw (not averaged) frames were
produced. This only works when the number of training samples is
high enough that it will find appropriate frames most of the time.
For the small training set, DNN achieved a statistically significant
superior score compared to other configurations (all with p < 0.05).
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Fig. 3: Conversion accuracy, with blue solid bars representing the
large training set, and red patterned bars representing the small train-
ing set.

As expected, FS performed poorly; there is not enough data in the
small training case, and the search cannot find appropriate frames.
The DNN performed statistically significantly better compared to
JDGMM, which shows the robustness of DNN solutions when the
training size is small. An interesting result is that, using only two
sentences to train the DNN, we were able to match the conversion
accuracy of JDGMM trained with 70 training sentences.

4. CONCLUSION

In this study we trained a speaker-independent DAE to create a
compact representation of MCEP speech features. We then trained
an ANN to map source speaker compact features to target speaker
compact features. Finally, a DNN was initialized from the trained
DAE and trained ANN parameters, which was then fine-tuned using
back-propagation. Four competing mapping methods were trained
on either a two-sentence or on a 70-sentence training set. Objec-
tive evaluations showed that the DNN and FS performed best for
the large training set and DNN performed best for the small training
set. Perceptual experiments showed that for the large training set, FS
performed best regarding both accuracy and quality. For the small
training set, the DNN performed best regarding both accuracy and
quality. We were able to match the conversion accuracy of JDGMM
trained with 70 sentences with the pre-trained DNN trained using
only two sentences. These results are an example of the effective-
ness of semi-supervised learning.
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