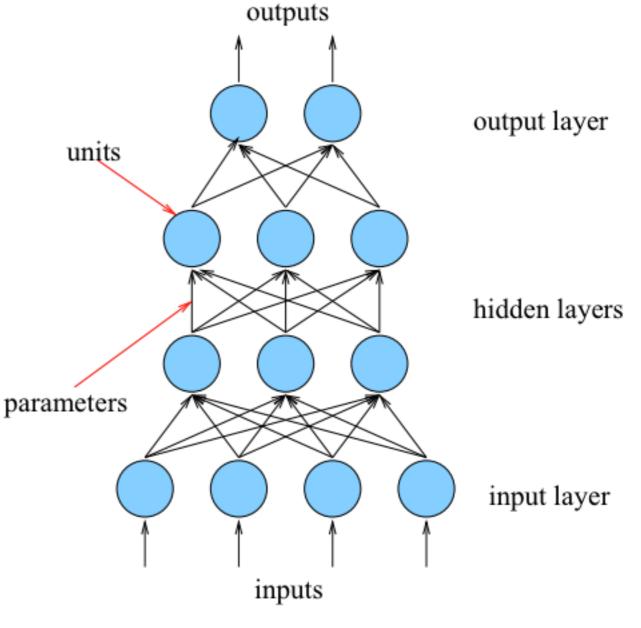
Deep Learning Hamid Mohammadi Machine Learning Course @ OHSU 2015-06-01

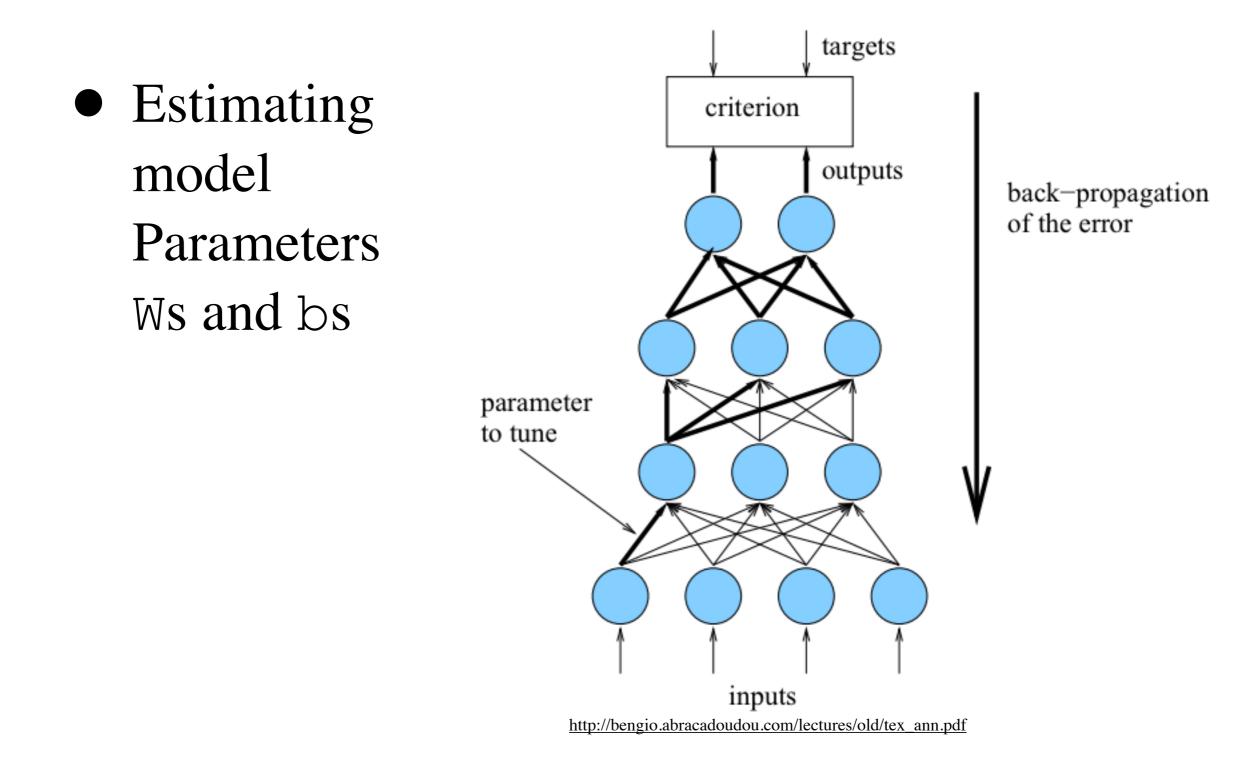
Recap: ANNs

- ANN is composed of multiple layers
- Layers perform non-linear transformations



http://bengio.abracadoudou.com/lectures/old/tex_ann.pdf

Backpropagation

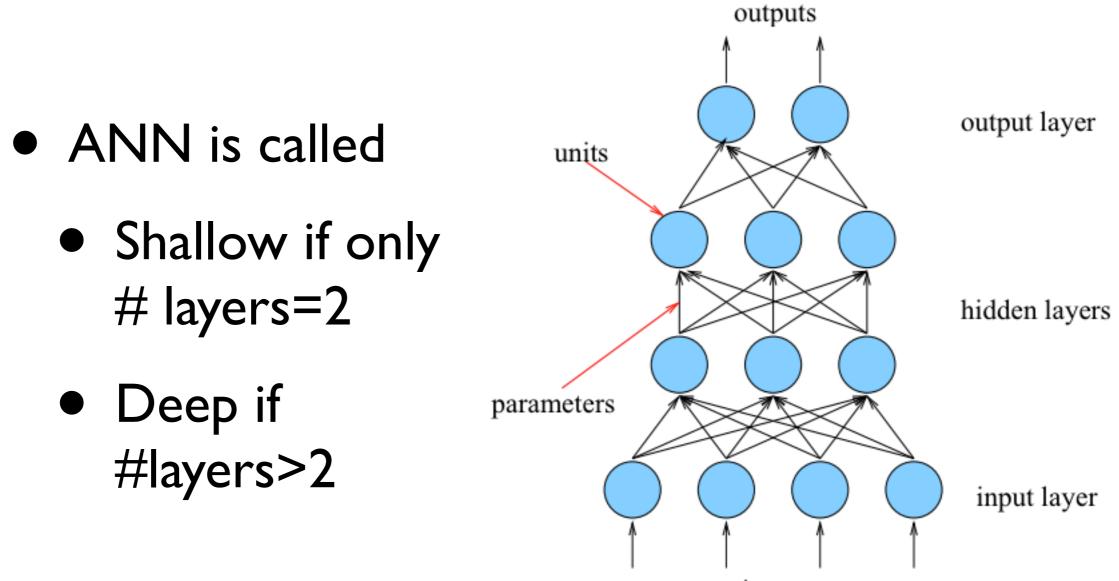


Backpropagation

• Criterion for ANN

- Mean Squared Error:
 - Error=(ŷ-y)^2
- Cross-entropy

Deep ANNs

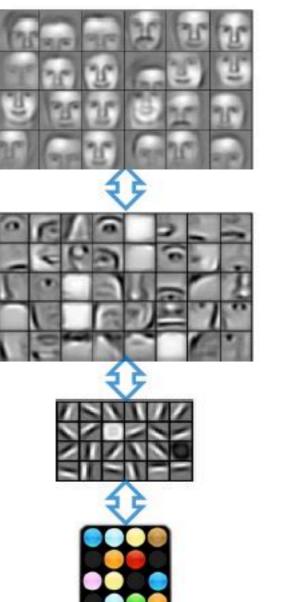


inputs

- Isn't a two-layer ANN a universal approximator?
- Why deep architectures are needed?
 - The brain has a deep architecture
 - Cognitive processes seem deep
 - Insufficient depth can hurt

- The brain has a deep architecture:
 - visual cortex has a sequence of levels
 - Each level represents the input at a different level of abstraction,
 - more abstract features further up in the hierarchy, defined in terms of the lower-level ones.
- Cognitive processes seem deep
- Insufficient depth can hurt

Feature representation



3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

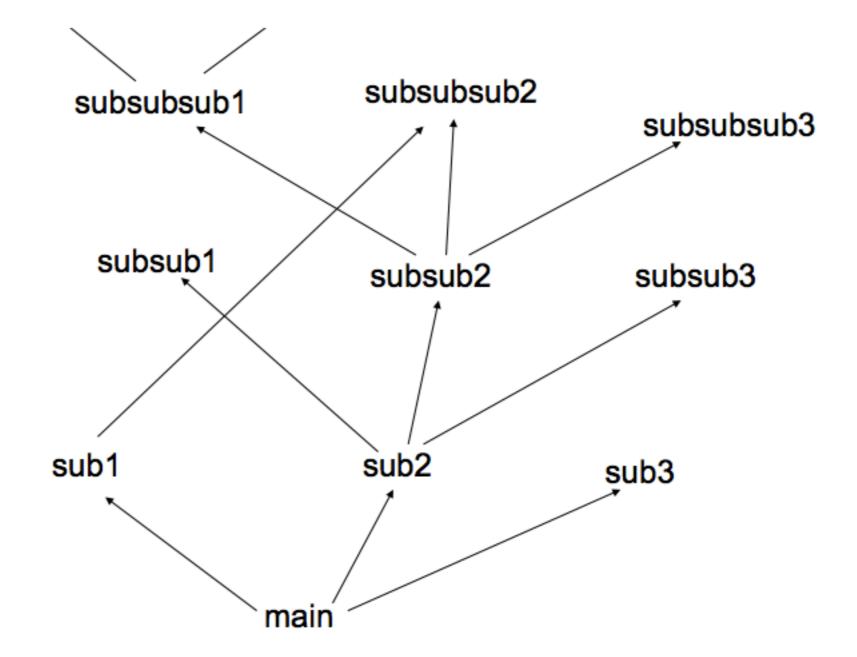
Pixels

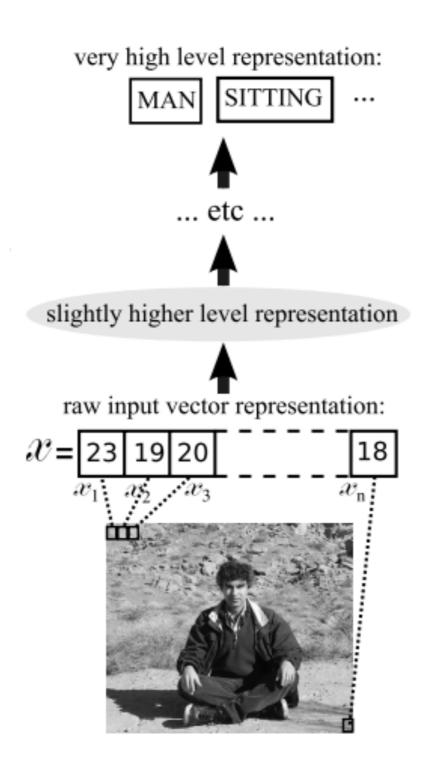
- The brain has a deep architecture:
- Cognitive processes seem deep
 - Humans organize their ideas and concepts hierarchically.
 - Humans first learn simpler concepts and then compose them to represent more abstract ones.
 - Engineers break-up solutions into multiple levels of abstraction and processing
- Cognitive processes seem deep

subroutine1 includes subsub1 code and subsub2 code and subsubsub1 code

subroutine2 includes subsub2 code and subsub3 code and subsubsub3 code and ...

main

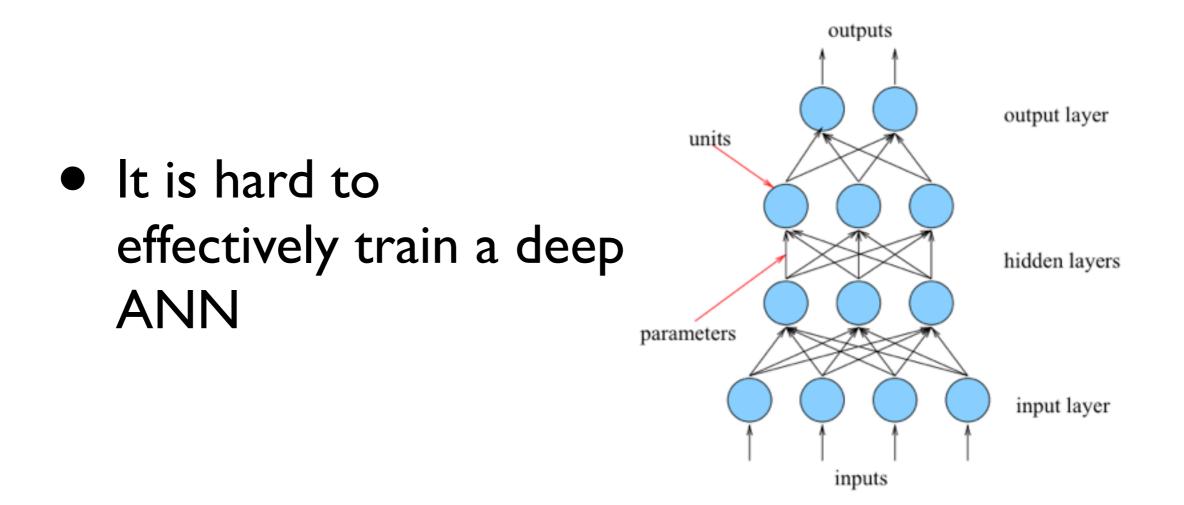




- The brain has a deep architecture:
- Cognitive processes seem deep
- Insufficient depth can hurt
 - there exist function families which the required number of nodes may grow exponentially with the input size [Hastad 1986]

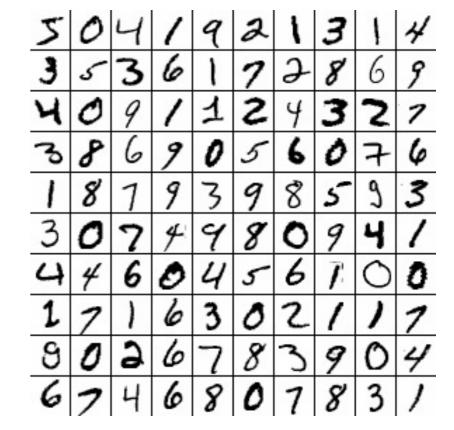
- Some families of functions which can be efficiently (compactly) represented with O(n) nodes (for n inputs) for depth d
- but for which an exponential number (O(2ⁿ)) of nodes is needed if **depth is** restricted to d-l

DNN



MNIST Corpus

- 28x28 pixels, pixel values range from 0 to 1
- Contains 70,000 images
 - 50,000 training set
 - 10,000 validation set
 - 10,000 test set



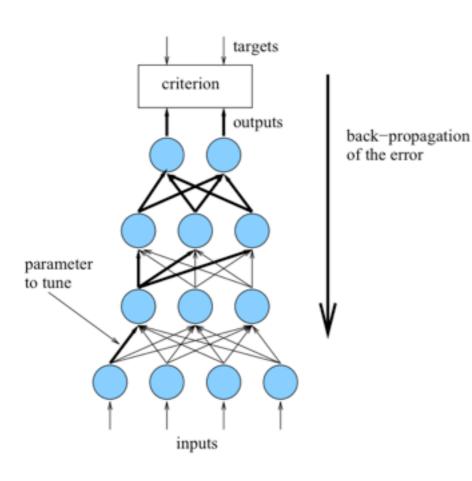
• Task: Classify 10 digit classes

MNIST Corpus

Convolutional net Boosted LeNet-4, [distortions]	none	0.7
Trainable feature extractor + SVMs [no distortions]	none	0.83
Trainable feature extractor + SVMs [elastic distortions]	none	0.56
Trainable feature extractor + SVMs [affine distortions]	none	0.54
unsupervised sparse features + SVM, [no distortions]	none	0.59
Convolutional net, cross-entropy [affine distortions]	none	0.6
Convolutional net, cross-entropy [elastic distortions]	none	0.4
large conv. net, random features [no distortions]	none	0.89
large conv. net, unsup features [no distortions]	none	0.62
large conv. net, unsup pretraining [no distortions]	none	0.60
large conv. net, unsup pretraining [elastic distortions]	none	0.39
large conv. net, unsup pretraining [no distortions]	none	0.53
large/deep conv. net, 1-20-40-60-80-100-120-120-10 [elastic distortions]	none	0.35
committee of 7 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.27 +-0.02
committee of 35 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.23

Weight decay

What weights might look like this if DNN is trained using simple back-propagation



	100		1.2		U.S.	10		
					12 - FE		Y -	
	121			1.4	12			
	ある							
	Å							
			3 . No.					a da a
								P
100		14			4			
		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	1.4		50			

ANN

- The simple backprop would either
 - get stuck in local minima and give bad results or
 - it might give better results but the weights are hard to describe (how does it work?)

DNN training

• How to train a DNN effectively?

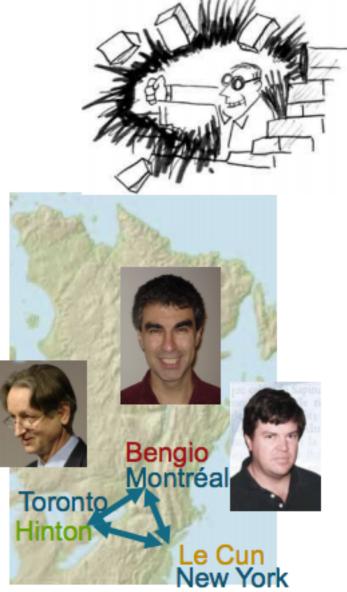
DNN training

- How to train a DNN effectively?
 - First breakthrough: Unsupervised pre-training
 - Huge amounts of data: requires high computation power. Lots of work on GPUs
 - New structures: activation functions like ReLU and maxout, other structures like CNNs and RNNS
 - Clever training: dropout

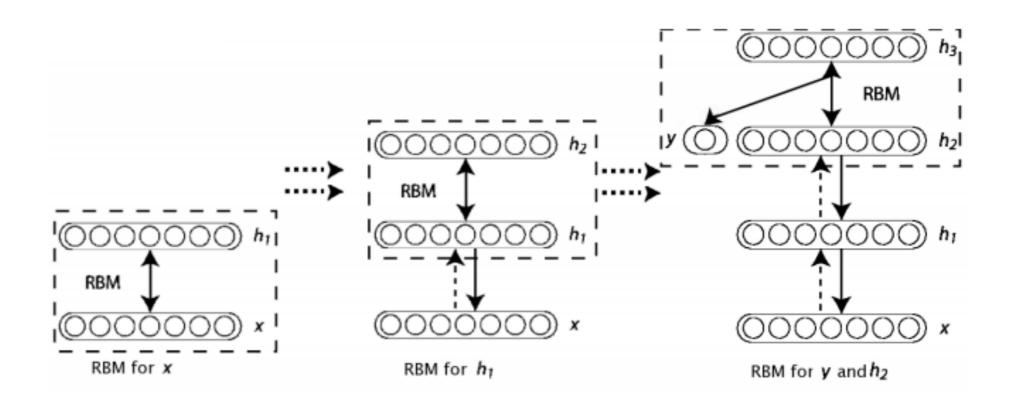
DNN training

- How to train a DNN effectively?
 - First breakthrough: Unsupervised pre-training
 - Huge amounts of data: requires high computation power. Lots of work on GPUs
 - New structures: activation functions like ReLU and maxout, other structures like CNNs and RNNS
 - Clever training: dropout

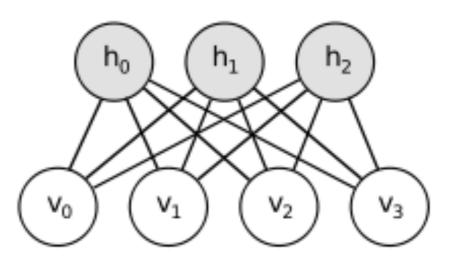
- previous purely supervised attemption
 failed
- Unsupervised feature learners:
 - Restricted Boltzmann Machines
 - Auto-encoder variants
 - Sparse coding variants



One of the big ideas from 2006:
 layer-wise unsupervised ore-training



- RBMs
- h=g(Wv+b)
- v=g(W'h+c)

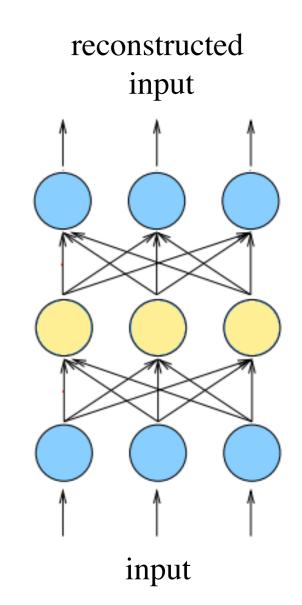


RBMs are Energy-based models trained to maximize the energy

Autoencoders

• These networks try to reconstruct the input

 where the first and second layer weights are tied
 W'=transpose(W)



Autoencoders vs RBMs

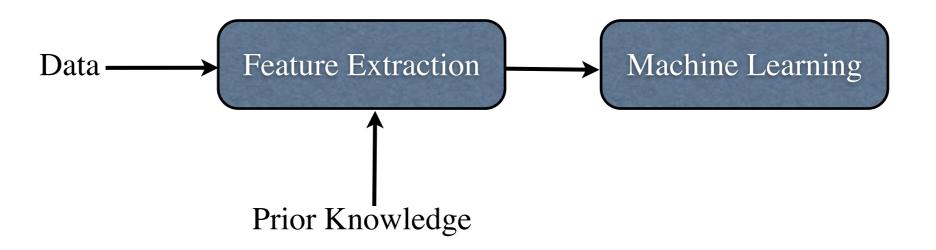
 RBMs and denoising autoencoders (DAE) have shown to converge to the same solution under certain conditions

- Start training the network using backprop from the RBM or DAE weights and not initial randomization.
- Why does unsupervised pre-training work?
 - It is a form of feature learning.

- The goal of unsupervised pre-training is
 - to see a lot of unlabeled examples
 - learn features from it

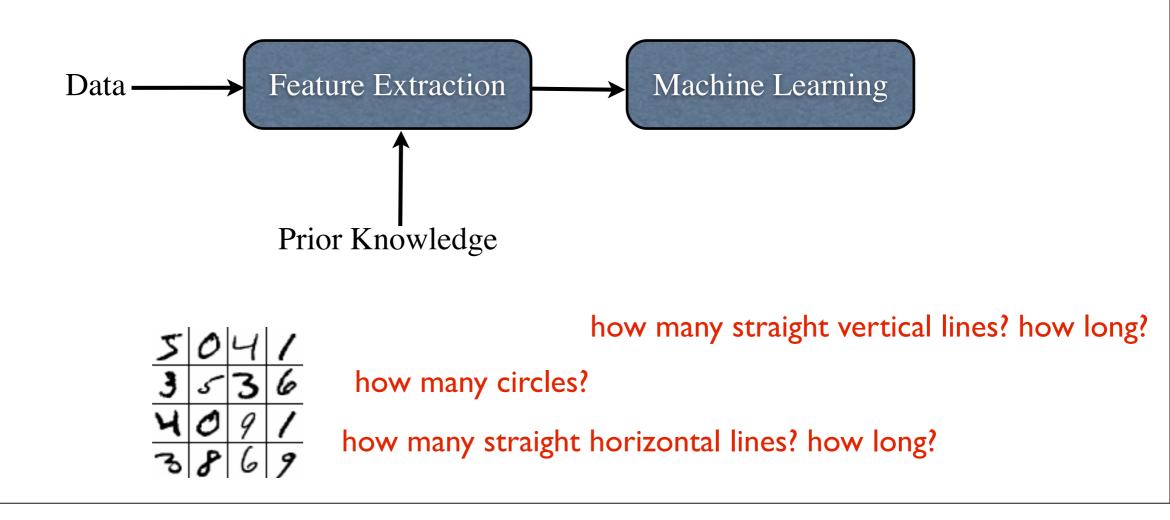
Feature Learning

• Usual Machine Learning applications have two steps

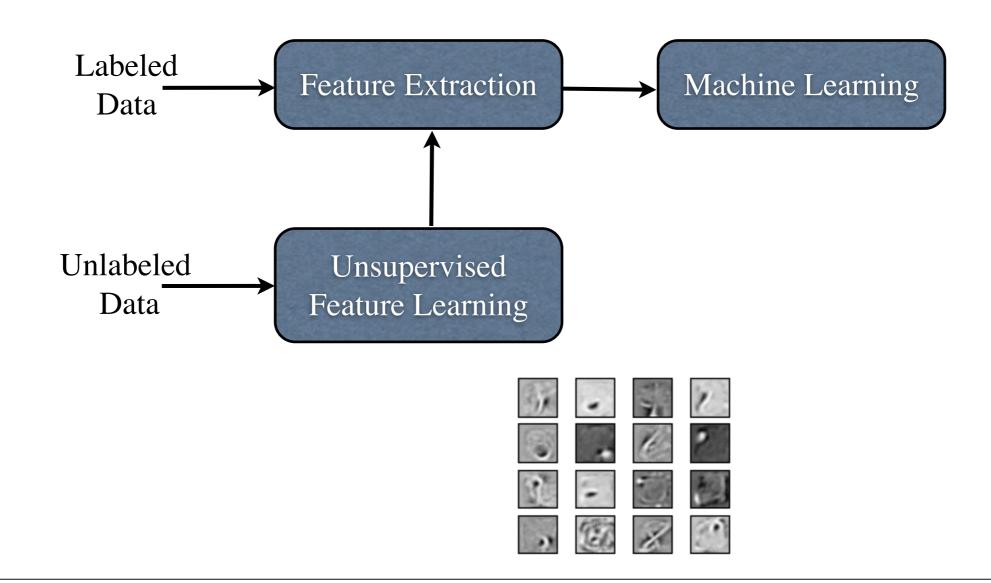


Feature Learning

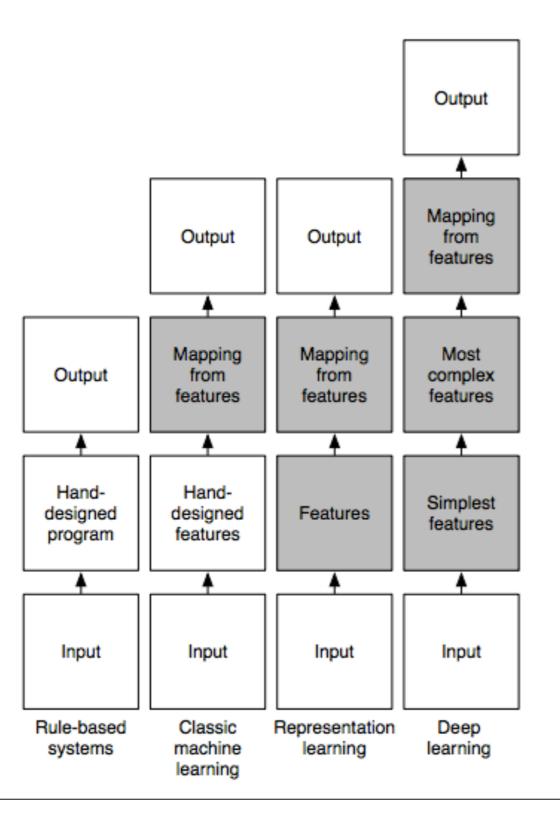
• Usual Machine Learning applications have two steps



Feature Learning

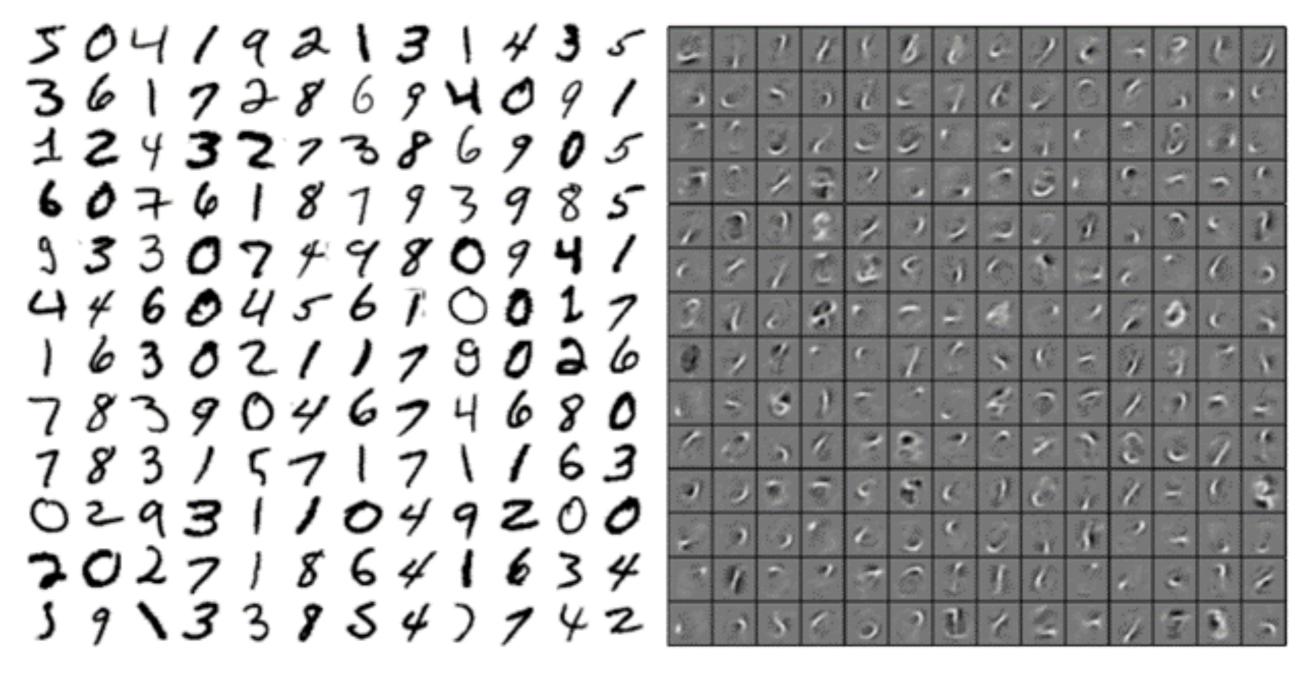


Feature learning

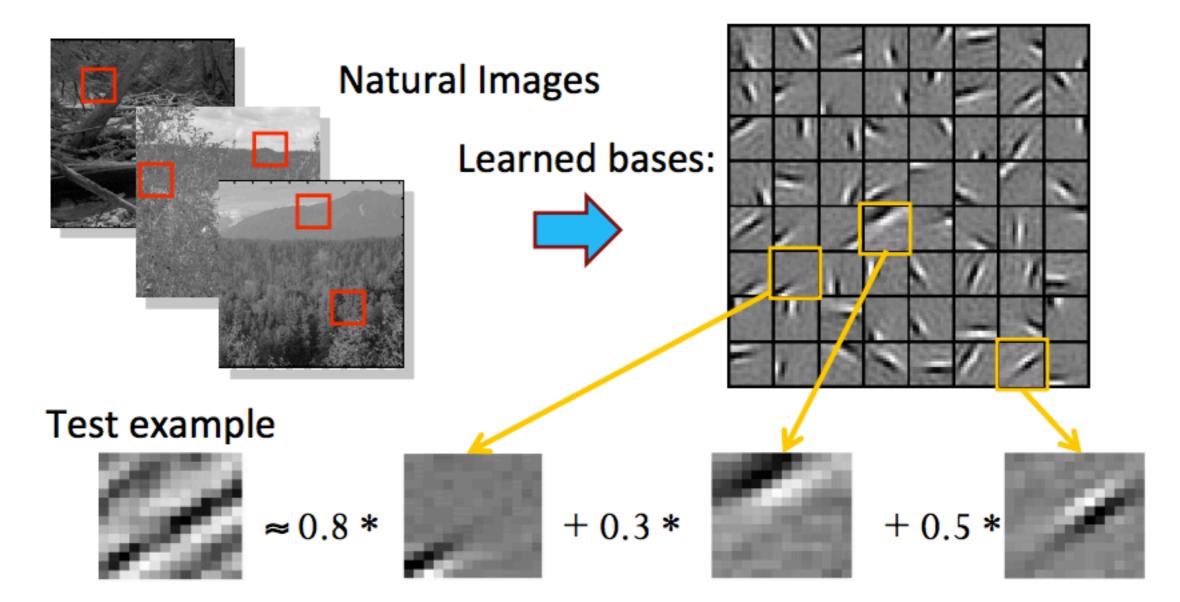


Edge detection

Unsupervised Feature Learning



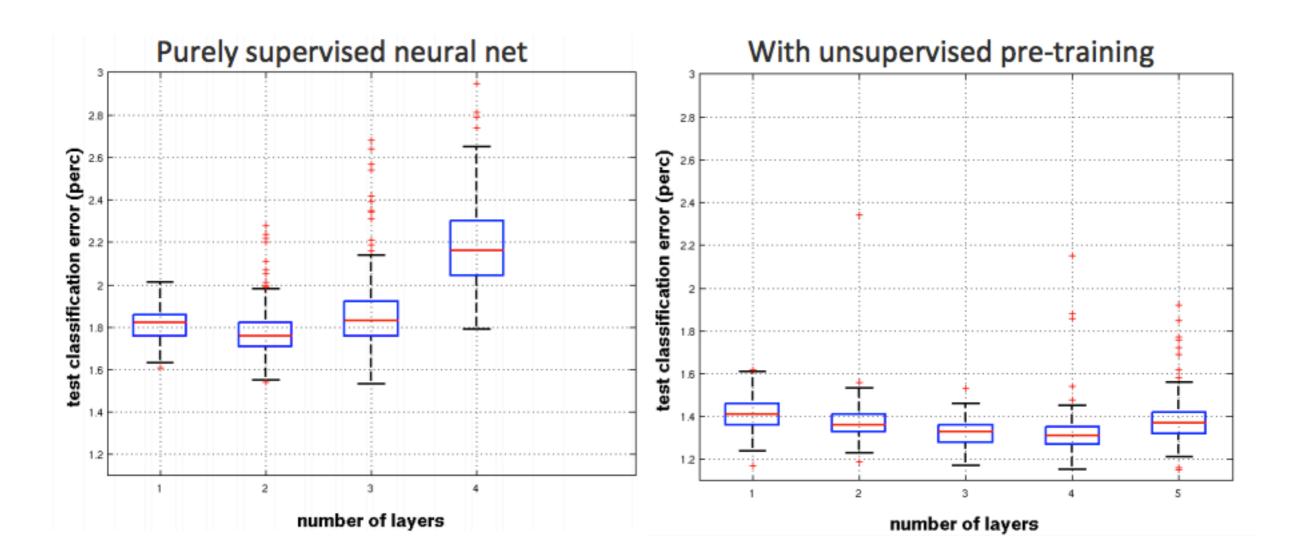
Sparse Coding



 $[h_1, ..., h_{64}] = [0, 0, ..., 0,$ **0.8**, 0, ..., 0,**0.3**, 0, ..., 0,**0.5**, 0] (feature representation)

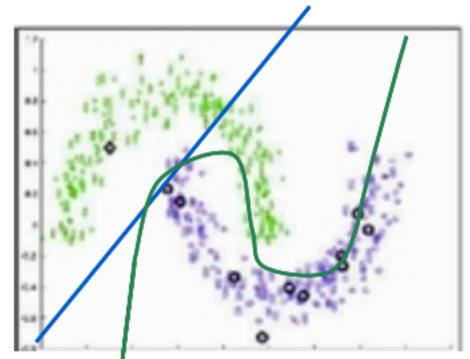
Results

• MNIST results



Unsupervised

- Recently, with enough data, and advances in the field, it has been shown that unsupervised learning is not always necessary
 Without unlabeled examples
- but helps if:
 - data size is small
 - low computation power



With unlabeled examples

DNN training

- How to train a DNN effectively?
 - First breakthrough: Unsupervised pre-training
 - Huge amounts of data: requires high computation power. Lots of work on GPUs
 - New structures: activation functions like ReLU and maxout, other structures like CNNs and RNNS
 - Clever training: dropout

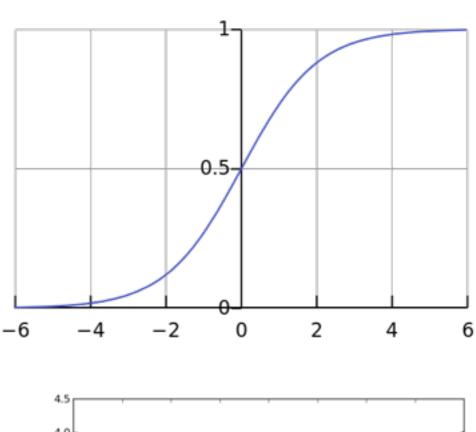
DNN training

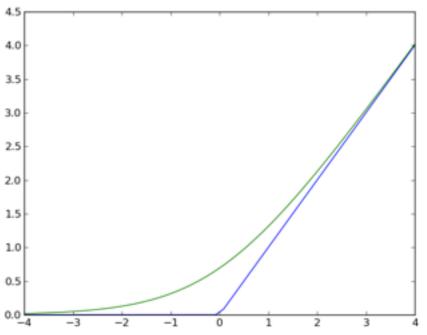
- How to train a DNN effectively?
 - First breakthrough: Unsupervised pre-training
 - Huge amounts of data: requires high computation power. Lots of work on GPUs
 - New structures: activation functions like ReLU and maxout, other structures like CNNs and RNNS
 - Clever training: dropout

Activation functions

- Old style ones:
 - Sigmoid
 - Tanh

- Rectifier f(x) = max(0, x)
- Softplus $f(x) = ln(l + e^x)$



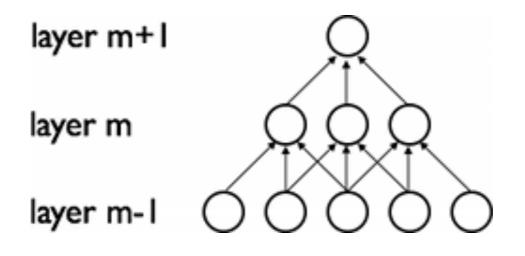


Convolutional NN

- Convolutional Neural Networks (CNN) are biologically-inspired variants of MLPs.
- Mimic visual cortex cell arrangemens
- exploit the strong spatially local correlation present in natural images

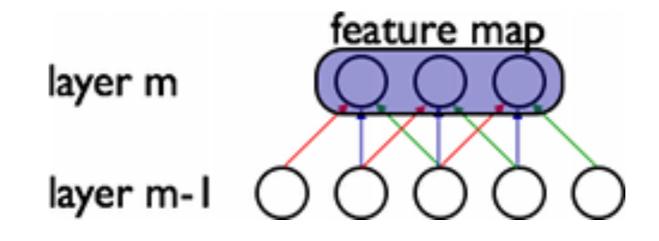
Convolutional NN

• Sparse Connectivity

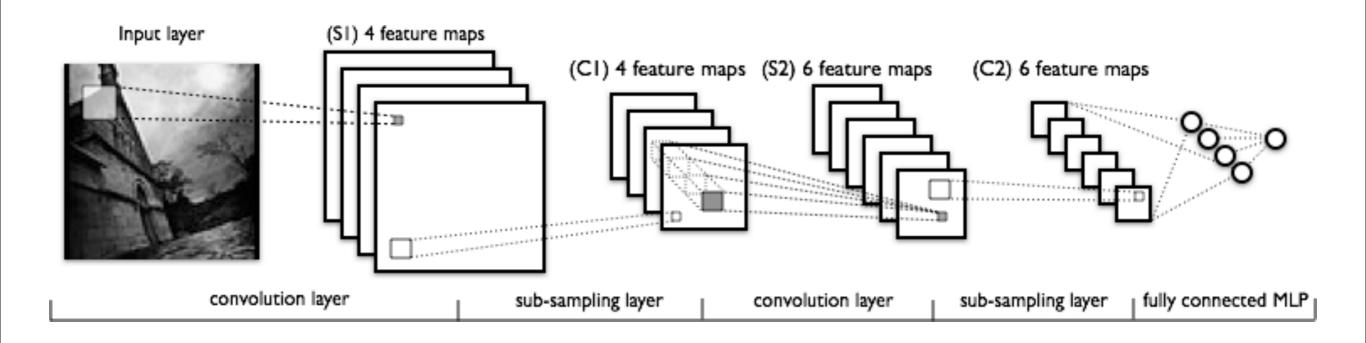


Convolutional NN

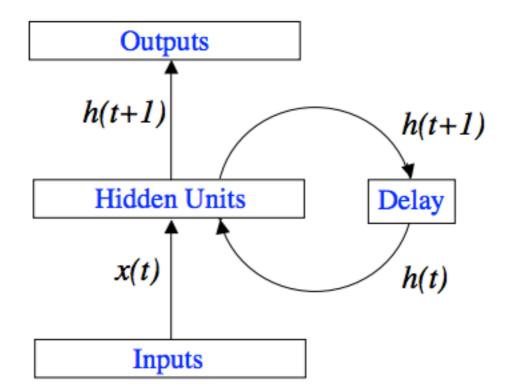
• Weight sharing



Deep CNNs



Recurrent NNs



Application specific

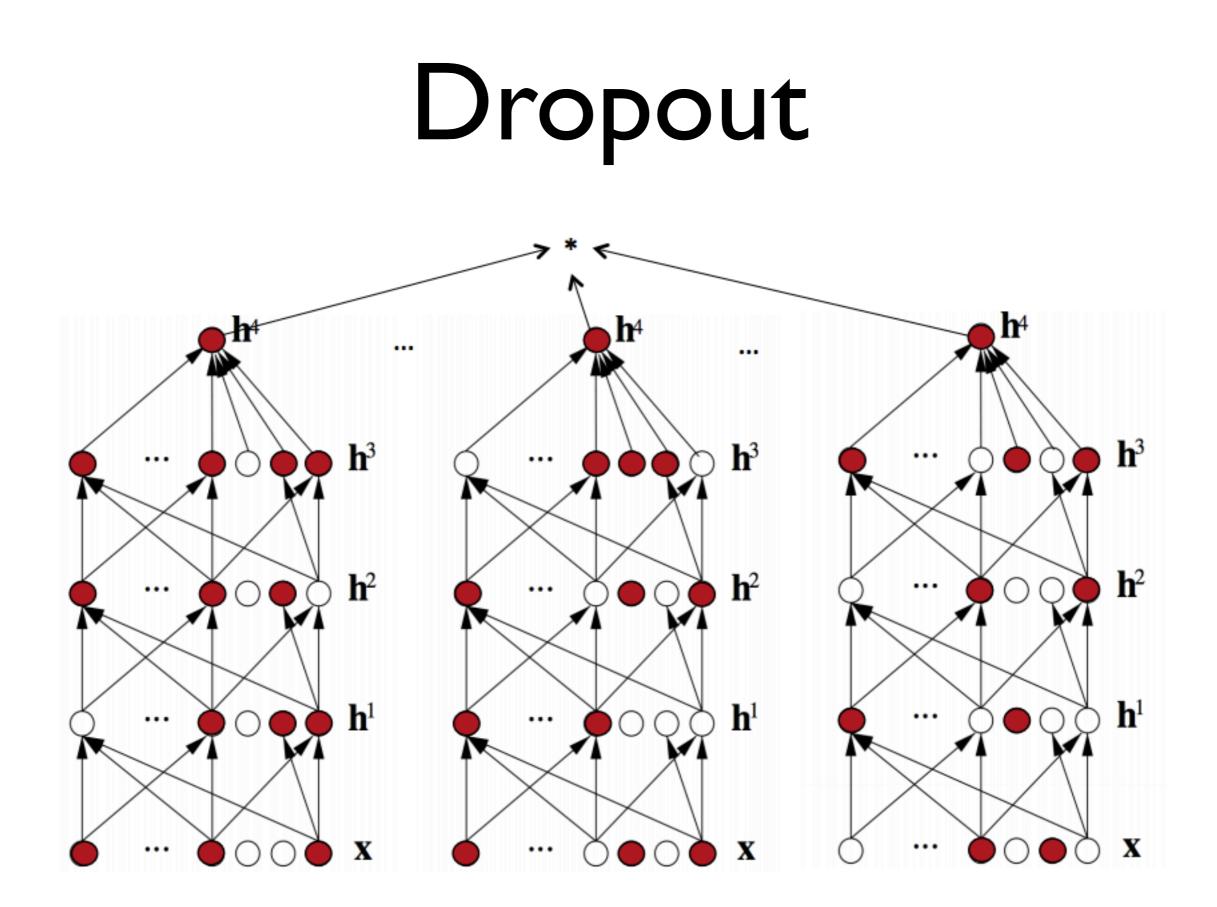
- CNNs have shown significant improvements for vision field
- RNNs have shown significant improvements for speech field
- New machine learning: less signal processing (feature engineering) and more model engineering

DNN training

- How to train a DNN effectively?
 - First breakthrough: Unsupervised pre-training
 - Huge amounts of data: requires high computation power. Lots of work on GPUs
 - New structures: activation functions like ReLU and maxout, other structures like CNNs and RNNS
 - Clever training: dropout

Dropout

- during training multiply neuron output by random 0/1 bit (p=0.5),
- during test weight by 0.5 to adjust
- works very good with ReLU and maxout



Dropout

- New Machine Learning:
 - set the number of your parameters to more than it is actually needed
 - use clever regularizations such as dropout to avoid over-fitting

Conclusion

- How to train a DNN effectively?
 - First: Unsupervised pre-training
 - Huge amounts of data, high computation power
 - Activation functions like ReLU
 - Clever training: dropout
- The last three innovations have made unsupervised learning less necessary

Conclusion

 Designing models rather than feature engineering -> is signal processing going to be extinct?!

Huge number of parameters (more than needed) but use regularization

References

- [1] Y. Bengio, Learning Deep Architectures for AI, 2009
- [2] Y. Bengio, Deep Learning, MLSS, 2015
- [3] <u>http://www.iro.umontreal.ca/~pift6266/</u> <u>H10/notes/deepintro.html</u>
- [4] deeplearning.net
- [5] <u>http://www.cs.bham.ac.uk/~jxb/INC/</u>