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Recap: ANNs
• ANN is composed 

of multiple layers

• Layers perform 
non-linear 
transformations

•y=g(Wx+b)

http://bengio.abracadoudou.com/lectures/old/tex_ann.pdf
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Backpropagation
• Estimating 

model
Parameters
Ws and bs

http://bengio.abracadoudou.com/lectures/old/tex_ann.pdf
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Backpropagation

• Criterion for ANN

• Mean Squared Error:

•Error=(ŷ-y)^2

• Cross-entropy

•Error=-sum(ŷlog(y)+
       (1-ŷ)log(1-y))
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Deep ANNs

• ANN is called

• Shallow if only
# layers=2

• Deep if 
#layers>2
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Why deep architecture?

• Isn’t a two-layer ANN a universal 
approximator?

• Why deep architectures are needed? 

• The brain has a deep architecture

• Cognitive processes seem deep

• Insufficient depth can hurt
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Why deep architecture?
• The brain has a deep architecture:

• visual cortex has a sequence of levels

• Each level represents the input at a 
different level of abstraction, 

• more abstract features further up in 
the hierarchy, defined in terms of the 
lower-level ones.

• Cognitive processes seem deep

• Insufficient depth can hurt
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Why deep architecture?
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Why deep architecture?
• The brain has a deep architecture:

• Cognitive processes seem deep

• Humans organize their ideas and concepts 
hierarchically. 

• Humans first learn simpler concepts and then 
compose them to represent more abstract 
ones. 

• Engineers break-up solutions into multiple 
levels of abstraction and processing

• Cognitive processes seem deep
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Why deep architecture?

• The brain has a deep architecture:

• Cognitive processes seem deep

• Insufficient depth can hurt

• there exist function families which the 
required number of nodes may grow 
exponentially with the input size 
[Hastad 1986]
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Why deep architecture?

• Some families of functions which can be 
efficiently (compactly) represented with 
O(n) nodes (for n inputs) for depth d

• but for which an exponential number 
(O(2^n)) of nodes is needed if depth is 
restricted to d-1
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DNN

• It is hard to 
effectively train a deep
ANN
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MNIST Corpus
• 28x28 pixels, pixel values range from 0 to 1

• Contains 70,000 images

• 50,000 training set

• 10,000 validation set

• 10,000 test set

• Task: Classify 10 digit classes

Monday, June 1, 15



MNIST Corpus
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Weight decay

• What weights might look like this if DNN 
is trained using simple back-propagation
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ANN

• The simple backprop would either 

• get stuck in local minima and give bad 
results or 

• it might give better results but the 
weights are hard to describe (how does 
it work?)
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DNN training

• How to train a DNN effectively?
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DNN training

• How to train a DNN effectively?

• First breakthrough: Unsupervised pre-training

• Huge amounts of data: requires high 
computation power.  Lots of work on GPUs

• New structures: activation functions like ReLU 
and maxout, other structures like CNNs and 
RNNS

• Clever training: dropout
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DNN training

• How to train a DNN effectively?

• First breakthrough: Unsupervised pre-training

• Huge amounts of data: requires high 
computation power.  Lots of work on GPUs

• New structures: activation functions like ReLU 
and maxout, other structures like CNNs and 
RNNS

• Clever training: dropout
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Unsupervised Pre-
training

• previous purely supervised attempts had 
failed

• Unsupervised feature learners: 

• Restricted Boltzmann Machines 

• Auto-encoder variants 

• Sparse coding variants
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Unsupervised Pre-
training

• One of the big ideas from 2006: 
layer-wise unsupervised ore-training
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Unsupervised Pre-
training

• RBMs

• h=g(Wv+b)

• v=g(W’h+c)

• RBMs are Energy-based models trained to 
maximize the energy
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Autoencoders
• These networks try to

 reconstruct the input

• h=g(Wx+b1)

• x_rec=g(W’h+b2)

• where the first and second 
layer weights are tied 
W’=transpose(W) 

input

reconstructed
 input
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Autoencoders vs RBMs

• RBMs and denoising autoencoders (DAE) 
have shown to converge to the same 
solution under certain conditions
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Unsupervised Pre-
training

• Start training the network using backprop 
from the RBM or DAE weights and not 
initial randomization.

• Why does unsupervised pre-training work?

• It is a form of feature learning.
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Unsupervised Pre-
training

• The goal of unsupervised pre-training is

• to see a lot of unlabeled examples 

• learn features from it
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Feature Learning

• Usual Machine Learning applications have 
two steps

Feature ExtractionData Machine Learning

Prior Knowledge
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Feature Learning

• Usual Machine Learning applications have 
two steps

Feature ExtractionData Machine Learning

Prior Knowledge

how many circles?

how many straight horizontal lines? how long?

how many straight vertical lines? how long?
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Feature Learning

Feature ExtractionLabeled
Data Machine Learning

Unsupervised 
Feature Learning

Unlabeled
 Data
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Feature learning
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Edge detection
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Sparse Coding
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Results

• MNIST results
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Unsupervised
• Recently, with enough data, and advances 

in the field, it has been shown that 
unsupervised learning is not always 
necessary

• but helps if:

• data size is small

• low computation power
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DNN training

• How to train a DNN effectively?

• First breakthrough: Unsupervised pre-training

• Huge amounts of data: requires high 
computation power.  Lots of work on GPUs

• New structures: activation functions like ReLU 
and maxout, other structures like CNNs and 
RNNS

• Clever training: dropout
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DNN training

• How to train a DNN effectively?

• First breakthrough: Unsupervised pre-training

• Huge amounts of data: requires high 
computation power.  Lots of work on GPUs

• New structures: activation functions like ReLU 
and maxout, other structures like CNNs and 
RNNS

• Clever training: dropout
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Activation functions

• Old style ones:

• Sigmoid

• Tanh

• Rectifier f(x) = max(0, x)

• Softplus f(x) = ln(1 + e^x)
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Convolutional NN

• Convolutional Neural Networks (CNN) 
are biologically-inspired variants of MLPs.

• Mimic visual cortex cell arrangemens

• exploit the strong spatially local correlation 
present in natural images
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Convolutional NN

• Sparse Connectivity

•
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Convolutional NN

• Weight sharing
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Deep CNNs
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Recurrent NNs
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Application specific

• CNNs have shown significant 
improvements for vision field

• RNNs have shown significant 
improvements for speech field

• New machine learning: less signal 
processing (feature engineering) and more 
model engineering
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DNN training

• How to train a DNN effectively?

• First breakthrough: Unsupervised pre-training

• Huge amounts of data: requires high 
computation power.  Lots of work on GPUs

• New structures: activation functions like ReLU 
and maxout, other structures like CNNs and 
RNNS

• Clever training: dropout
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Dropout

• during training multiply neuron output by 
random 0/1 bit (p=0.5), 

• during test weight by 0.5 to adjust

• works very good with ReLU and maxout
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Dropout
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Dropout

• New Machine Learning:

• set the number of your parameters to 
more than it is actually needed

• use clever regularizations such as 
dropout to avoid over-fitting
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Conclusion

• How to train a DNN effectively?

• First: Unsupervised pre-training

• Huge amounts of data, high computation power

• Activation functions like ReLU 

• Clever training: dropout

• The last three innovations have made 
unsupervised learning less necessary
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Conclusion

• Designing models rather than feature 
engineering -> is signal processing going to 
be extinct?! 

• Huge number of parameters (more than 
needed) but use regularization
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