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INTRODUCTION

• Voice Conversion (VC): converts a source speaker’s speech to
sound like a target speaker’s voice.
• VC preserves target’s speaker identity and source’s phonetic context.
• One-shot VC methods typically disentangle speaker identity and phonetic

context. Then speaker identity representation is modified while keeping
phonetic context constant.

• Challenges: The models cannot fully disentangle these factors as
shown in a previous study.

• Proposal: We posit that the senone posteriorgrams (PPG) from an
already-trained ASR model can be used in lieu of learned phonetic
context representations.
• We focus on learning only the speaker representation.
• We present a one-shot voice conversion technique by modifying the learned

speaker identity representation.
• Through experiments, we show that modification of these factors allows

better disentanglement and hence transformation of voice.

MODEL

• Our proposed model consists of an encoder and a decoder (RNNs)
• Encoder’s input is MCEPs, outputting a speaker embedding vector: z = E(X)
• Decoder takes the generated speaker embedding along with PPG sequence as

input, and generates the acoustic features: X′ = D(P, z)
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• We train the model by optimizing the training loss:

`(X,X′) = ΣN
i=1||xi − x′i||22

• To perform VC:
• Compute zsrc and ztrg of the source and target utterances.
• Compute average diff vector z̄diff = z̄trg − z̄src

• Add average diff vector to source zconverted = zsrc + z̄diff

EXPERIMENT

• We used the TIMIT corpus as the training data.
• To compute the phonetic posteriorgrams, we use Kaldi
• We use librispeech as speech corpus to train ASR.

Encoder
recurrent layer GRU-1024, Dropout
output layer FC-Dz, ReLU

Decoder
dense block input PPGs, FC-1024, ReLU, Dropout
combine layer dense output + speaker embedding z
dense block FC-1024, ReLU, Dropout
recurrent layer GRU-1024, Dropout
output layer FC-Dx

The network architectures of our encoder and decoder models.
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Visualization of speaker embedding: Blue dots are male speakers and red
dots are females. FHVAE (left) vs. Proposed (right).

• We use Factorized Hierarchal Variational Autoencoder (FHVAE)
[1] as baseline.

• We observe that
• The proposed model’s computed speaker embeddings for different speakers

fall further apart compared to FHVAE.
• Also they are more evenly distributed compared to VAE embeddings which

tend to be more densely distributed.
• The gender clusters have a better separation margin.

• This subjectively depicts a more robust speaker embedding quality.
• The voice conversion samples are available at:
• https://shamidreza.github.io/is19samples

[1] Seyed Hamidreza Mohammadi and Taehwan Kim, Investigation of using
disentangled and interpretable representations for one-shot cross-lingual voice
conversion.” Interspeech 2018.

EXPERIMENT: SPEECH QUALITY

• We show the speech quality Comparative Mean Opinion Score
(CMOS) in which 50 listeners score which sample quality is better
by using +2 (much better) to -2 (much worse) score.

• We found statistical significant preference scores for F2M
condition.

• We did not find statistical significant preference scores for other
conditions.
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Proposed vs. FHVAE

Speech Quality average score with gender break-down. Positive scores favor
proposed model. F2M preference score is statistically significant.

EXPERIMENT: SPEAKER SIMILARITY

• 50 listeners listen and rate A and B with score ranging from +2
(definitely same) to -2 score (definitely different)

• The results show proposed and FHVAE achieving 0.20±0.11 and
-0.10±0.12

• The proposed model performs statistically significantly better than
FHVAE in all comparison pairs
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Speaker Similarity average score with gender break-down. Positive scores
are desirable. (confidence intervals for all is close to 0.11, and all score-pairs
are statistically significant)
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