VOICE CONVERSION

- Questions:
- Does a semi-supervised approach improve VC performance?
- Does using multiple frames improve performance?
- Approach:
-We propose to first train a deep autoencoder on unlabeled TIMIT speakers and use those weights as part of pre-training a DNN mapping. - We propose to find several similar speaker to each source and target speakers to pre-train the mapping function.
- We also propose a new learning structure called Joint-Autoencoder.

JOINT AUTOENCODER

- We can train two separate autoencoders on the source and target speakers' features - the source encodings and the target encodings are unlikely to be correlated
- We propose to maximize the similarity of the encoding values and thus reduce the complexity
- The Joint-Autoencoder (JAE) consists of two Autoencoders (AEs): - Source AE

$$
\begin{aligned}
& \mathbf{h}_{x}=f_{\text {hid }}\left(\mathbf{W} \mathbf{x}+\mathbf{b}_{\text {hid }}\right) \\
& \mathbf{x}_{\mathbf{x}}=f_{v i c}\left(\mathbf{W}^{\top} \mathbf{h}_{\mathbf{z}}+\mathbf{b}_{\text {id }}\right.
\end{aligned}
$$

- Target AB

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{x}}=f_{v i c}\left(\mathbf{W}^{\top} \mathbf{h}_{\mathbf{z}}+\mathbf{b}_{\text {id }}\right. \\
& \begin{array}{l}
\mathbf{h}_{y}=f_{h i d}\left(\mathbf{V} \mathbf{y}+\mathbf{c}_{h i d}\right) \\
\hat{\mathbf{y}}=\boldsymbol{v}^{\top}\left(\mathbf{V}^{\top}{ }^{\mathbf{T}}+\mathbf{c}\right.
\end{array} \\
& \hat{\mathbf{y}}=f_{\text {uis }}\left(\mathbf{V}^{\top} \mathbf{h}_{y}+\mathbf{c}_{\text {vis }}\right)
\end{aligned}
$$

- Cost function: Reconstruction cost + hidden layer similarity

$$
E=\alpha\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}+\alpha\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}+(1-\alpha)\left\|\mathbf{h}_{x}-\mathbf{h}_{y}\right\|^{2}
$$

- For phonetically similar speech segments from source and target speakers, the encoding values from the two AEs are similar.
- Encoding layers of the source AE is followed by the Decoding layers of the target AE to initializes the DNN.

EXPERIMENT: CONVERSION ACCURACY

- Total of 40 listeners, each evaluating 48 sentence pairs
- Listeners hear two stimuli and score whether they are uttered by the same speaker, from definitely (+2) to definitely not (-2)
- Same case: we play converted target and real target, we hypothesize positive scores
- Diff case: we play converted target and a different speaker (with same gender as target), we hypothesize negative scores
- Final score is same-score - diff-score

- multi-frame DNN performed better than single-frame DNN - pre-trained DNN performed better than randomly-initialized DNN

CONCLUSIONS

- We proposed a Stacked-Joint-Autoencoder architecture, which aims to find a common encoding of parallel source and target features
- We found similar speakers in TIMIT corpus for source and target speaker
- We used this Stacked-Joint-Autoencoder to pre-train a DNN - A pre-trained DNN performed better than a non pre-trained DNN for both quality and similarity
- We did not find a significant improvement in the subjective scores using multiple frames

ACKNOWLEDGEMENT

This material is based upon work supported by the National Science Foundation under Grant No. 0964468.

